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S.1 Intrinsic Researcher Motivation

In some applications, researchers have an intrinsic motivation to gather information.
For instance, a pharmaceutical firm may have a significant interest in the regulatory ap-
proval of their vaccine, and so may undertake clinical trials even in the absence of a gov-
ernment subsidy. This section extends my model to accommodate these applications, by
relaxing the assumption that the researcher is disinterested in the result of her experiment.

Suppose that when the researcher’s experiment induces the belief p, the researcher re-
ceives indirect utility of π(p), in addition to any compensation she might receive from the
researcher and any costs associated with her experiment. As with the principal, this indi-
rect utility might represent a payoff from persuasion, from optimally choosing an action,
or from some non-instrumental benefit of information. Then the value that the researcher
receives from the experiment τ, exclusive of cost and transfers from the principal, is given
by Π(τ) ≡ Eτ[π(p)− π(p0)]. Hence, when a type-θ researcher conducts the experiment τ

and receives t from the principal, she now receives a payoff of t + Π(τ)− C(τ, θ). We say
that a contract implements χ : Θ → X when the researcher is intrinsically motivated if a type-θ
intrinsically motivated researcher who accepts that contract and conducts the experiment
χ(θ) gets an expected payoff which is at least as large as the expected payoff from conduct-
ing any other experiment, either after accepting the contract or after rejecting it.

This affects both the incentive compatibility and participation constraints facing the
principal. Define χ(θ) ∈ arg maxτ{Eτ[π(p) − θc(p)] s.t. Eτ p = p0}. Then when the re-
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searcher is intrinsically motivated, the methods-based contracting problem (1) becomes

max
χ,t

EF[Eχ(θ)[w(p)]− t(θ)] (S.1)

s.t. Eχ(θ)p = p0 ∀θ ∈ Θ,

t(θ) + Π(χ(θ))− C(χ(θ), θ) ≥ t(θ′) + Π(χ(θ′))− C(χ(θ′), θ) ∀θ, θ′ ∈ Θ, (ĨCθ)

t(θ) + Π(χ(θ))− C(χ(θ), θ) ≥ Π(χ(θ))− C(χ(θ), θ) ∀θ ∈ Θ. (ĨRθ)

If the only difference between (S.1) and the contracting problem (1) from the main text
was the replacement of the incentive compatibility constraint (ICθ) with (ĨCθ), the differ-
ence between their solutions would be minimal: By subtracting Π(χ(θ)) from the transfers
t(θ) found in (2) and (3), and adding π(p) to the principal’s objective function in the re-
duced problem (4), the analysis from Section 3 would go through essentially unchanged.
The replacement of the participation constraint (IRθ) by (ĨRθ) is far more consequential:
Different types now have different outside options, as in Jullien (2000), and so participa-
tion constraints for types other than θ1 may be relevant. If so, we cannot pin down t and
reduce the principal’s contracting problem the way we did in Section 3.

However, there is a condition under which the results from the basic model continue
to apply. Proposition S.1 shows that as long as the principal wants each researcher type
to conduct a more costly experiment than the next-highest cost type would conduct in the
absence of a subsidy, only the highest-cost type’s participation constraint can bind.

Proposition S.1 (Reducing the Principal’s Problem with an Intrinsically Motivated Re-
searcher). Suppose that Eχ(θi−1)

[c(p)] ≥ Eχ(θi)
[c(p)] for each i ∈ {2, . . . , N}. Then (χ, t) solves

the principal’s problem when the researcher is intrinsically motivated (S.1) if and only if t is given
by

t(θ1) = θ1Eχ(θ1)
[c(p)]−Π(χ(θ1)) + Π(χ(θ1))− C(χ(θ1), θ1), (S.2)

t(θi) =

{
θiEχ(θi)

[c(p)] + ∑i−1
j=1(θj − θj+1)Eχ(θj)

[c(p)]

−Π(χ(θi)) + Π(χ(θ1))− C(χ(θ1), θ1)
∀i ∈ {2, . . . , N}, (S.3)

and χ solves

max
χ

EF

[
Eχ(θ) [w(p) + π(p)− g(θ)c(p)]

]
(S.4)

s.t. Eχ(θ)p = p0 ∀θ ∈ Θ,

Eχ(θi−1)
[c(p)] ≤ Eχ(θi)

[c(p)] ∀i ∈ {2, . . . , N}. (S.5)

Corollary S.1 (Methods-Based Contracting with an Intrinsically Motivated Researcher).
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When the researcher is intrinsically motivated, and the principal’s reduced problem (S.4) has a
solution χ̂ such that Eχ̂(θi−1)

[c(p)] ≥ Eχ(θi)
[c(p)] for each i ∈ {2, . . . , N}:

i. (Theorem 1) The principal has an optimal methods-based contract which implements a binary,
Blackwell-monotone experiment choice function χ∗; and

ii. (Theorem 2) If the researcher’s virtual type g(θ) is increasing in θ, then χ∗ exhibits no distor-
tion at the top, garbling everywhere else, and distortion lowers cost to the researcher and value
for the principal.

This condition also ensures that results-based implementation works largely the same
way as in the basic model, with minor modifications to the implementing contract ψχ con-
structed in Section 4. These are simple accounting changes: First, increase compensation
for each result by the amount of the highest-cost researcher’s reservation payoff. Then, re-
duce compensation for each result by the change that that result causes in the researcher’s
intrinsic payoff. More formally, offer the contract ψχ, where

ψχ(p) ≡ ψχ(p)− (π(p)− π(p0)) + Π(χ(θ1))− C(χ(θ1), θ1).

Proposition S.2 shows that with an intrinsically motivated researcher, this contract imple-
ments χ, and does so at an expected cost no greater than that of the lowest-cost implement-
ing methods-based contract.

Proposition S.2 (Results-Based Implementation with an Intrinsically Motivated Researcher).
If χ : Θ → X is binary and Blackwell-monotone, and Eχ(θi−1)

[c(p)] ≥ Eχ(θi)
[c(p)] for each

i ∈ {2, . . . , N}, then χ can be implemented with a results-based contract ψχ when the researcher is
intrinsically motivated. Furthermore, ψχ cannot be outperformed by a methods-based contract T:
If T implements χ when the researcher is intrinsically motivated, then Eχ(θ)ψχ(p) ≤ T(χ(θ)) for
each θ ∈ Θ.

S.1.1 Proofs for Section S.1

Lemma S.1. Suppose that χ : Θ→ X has the property that Eχ(θi−1)
[c(p)] ≥ Eχ(θi)

[c(p)] for each
i ∈ {2, . . . , N}. Then if (χ, t) satisfies (ĨRθ) for θ = θ1, and for each i ∈ {2, . . . , N}, satisfies
(ĨCθ) for (θ, θ′) = (θi, θi−1), then (χ, t) satisfies (ĨRθ).

Proof. First note that by definition of χ, Π(χ(θ))− C(χ(θ), θ) ≥ Π(χ(θ′))− C(χ(θ′), θ) for
each θ, θ′ ∈ Θ. By assumption, (ĨRθ) holds for θ = θ1. For i ∈ {2, . . . , N}, suppose (ĨRθ) is
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satisfied for θ = θi−1. Then since (ĨCθ) holds for (θ, θ′) = (θi, θi−1), we have

t(θi) + Π(χ(θi))− C(χ(θi), θi) ≥ t(θi−1) + Π(χ(θi−1))− C(χ(θi−1), θi)

= t(θi−1) + Π(χ(θi−1))− C(χ(θi−1), θi−1) + (θi−1 − θi)Eχ(θi−1)[c(p)]

≥ Π(χ(θi−1))− C(χ(θi−1), θi−1) + (θi−1 − θi)Eχ(θi−1)[c(p)]

≥ Π(χ(θi))− C(χ(θi), θi−1) + (θi−1 − θi)Eχ(θi−1)[c(p)]

= Π(χ(θi))− C(χ(θi), θi) + (θi−1 − θi)(Eχ(θi−1)[c(p)]− Eχ(θi)[c(p)])

≥ Π(χ(θi))− C(χ(θi), θi),

and (ĨRθ) is satisfied for θ = θi. Then by induction, (ĨRθ) is satisfied for all θ.

Lemma S.2. Suppose that χ : Θ→ X has the property that Eχ(θi−1)
[c(p)] ≥ Eχ(θi)

[c(p)] for each
i ∈ {2, . . . , N}.

i. If χ : satisfies the monotonicity constraints (S.5) and t : Θ → R is given by (S.2) and (S.3),
then (χ, t) satisfies (ĨCθ) and (ĨRθ).

ii. For any direct revelation contract (χ, t) that satisfies (ĨCθ) and (ĨRθ),

(a) Eχ(θi−1)
[c(p)] ≤ Eχ(θi)

[c(p)] for all i ∈ {2, . . . , N}.

(b) If t̂ is derived from χ according to (S.2) and (S.3), then t(θ) ≥ t̂(θ) for each θ ∈ Θ.
Moreover, (χ, t̂) satisfies (ĨCθ) and (ĨRθ).

Proof. The proof proceeds analogously to the proof of Lemma 4.

i. For each i ∈ {2, . . . , N} and ` < i, (S.2) and (S.3) yield

t(θi) + Π(χ(θi))− C(χ(θi), θi)

− (t(θ`) + Π(χ(θ`))− C(χ(θ`), θi))
=

i−1

∑
j=`

(θj − θj+1)Eχ(θj)[c(p)]− (θ` − θi)Eχ(θ`)[c(p)]

=
i−1

∑
j=`

(θj − θj+1)
(

Eχ(θj)[c(p)]− Eχ(θ`)[c(p)]
)
≥ 0, (by (S.5))

and for each i ∈ {1, . . . , N − 1} and ` > i,

t(θi) + Π(χ(θi))− C(χ(θi), θi)

− (t(θ`) + Π(χ(θ`))− C(χ(θ`), θi))
= (θi − θ`)Eχ(θ`)[c(p)]−

`−1

∑
j=i

(θj − θj+1)Eχ(θj)[c(p)]

=
`−1

∑
j=i

(θj − θj+1)
(

Eχ(θ`)[c(p)]− Eχ(θj)[c(p)]
)
≥ 0, (by (S.5))

implying (ĨCθ). From (S.2), (χ, t) satisfies (ĨRθ) for θ = θ1; then by Lemma S.1, (χ, t)
satisfies (ĨRθ).
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ii. (a) From (ĨCθ), for each i ∈ {2, . . . , N},

θi−1

(
Eχ(θi)

[c(p)]− Eχ(θi−1)
[c(p)]

)
≥ t(θi) + Π(χ(θi))− t(θi−1)−Π(χ(θi−1)),

θi

(
Eχ(θi)

[c(p)]− Eχ(θi−1)
[c(p)]

)
≤ t(θi) + Π(χ(θi))− t(θi−1)−Π(χ(θi−1));

⇒ (θi−1 − θi)
(

Eχ(θi)
[c(p)]− Eχ(θi−1)

[c(p)]
)
≥ 0;

⇔ Eχ(θi)
[c(p)]− Eχ(θi−1)

[c(p)] ≥ 0,

as desired.

(b) Since t̂ is derived from (S.2) and (S.3), we have

t̂(θ1) = C(χ(θ1), θ1)−Π(χ(θ1)) + Π(χ(θ1))− C(χ(θ1), θ1),

and for each i ∈ {2, . . . , N},

t̂(θi)− t̂(θi−1) = θi

(
Eχ(θi)

[c(p)]− Eχ(θi−1)
[c(p)]

)
+ Π(χ(θi))−Π(χ(θi−1))

= C(χ(θi), θi)− C(χ(θi−1), θi) + Π(χ(θi))−Π(χ(θi−1)).

Since (χ, t) satisfies (ĨRθ) for θ = θ1, we have

t(θ1) ≥ C(χ(θ1), θ1)−Π(χ(θ1)) + Π(χ(θ1))− C(χ(θ1), θ1) = t̂(θ1).

For each i ∈ {2, . . . , N}, since (χ, t) satisfies (ĨCθ) for θ = θi and θ′ = θi−1, we
have

t(θi)− t(θi−1) ≥ C(χ(θi), θi)− C(χ(θi−1), θi) + Π(χ(θi))−Π(χ(θi−1))

= t̂(θi)− t̂(θi−1).

Then for each j ∈ {2, . . . , N}, we have

t(θj) = t(θ1) +
N

∑
i=2

(t(θi)− t(θi−1)) ≥ t̂(θ1) +
N

∑
i=2

(t̂(θi)− t̂(θi−1)) = t̂(θj).

Finally, from parts (iia) and (i), (χ, t̂) satisfies (ĨCθ) and (ĨRθ).

Proof of Proposition S.1 (Reducing the Principal’s Problem with an Intrinsically Moti-
vated Researcher) Follows identically to the proof of Corollary 1, replacing Lemma 4 with
Lemma S.2. �
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Proof of Corollary S.1 (Methods-Based Contracting with an Intrinsically Motivated Re-
searcher) Observe that the principal’s reduced problem when the researcher is intrinsically
motivated (S.4) is just the principal’s reduced problem from the basic model (4) with w re-
placed by w + π. Then by Proposition 3, if we replace w with w + π in the ironed problem
(12), it is solved by χ̂.

For each θ, χ̂(θ) is a Borel distribution, so supp χ̂(θ) is closed, and min supp χ̂(θ) and
max supp χ̂(θ) exist. Then min supp χ̂(θ) ≤ p ≤ max supp χ̂(θ) for each p ∈ supp χ̂(θ),
and so min supp χ̂(θ) ≤ Eχ̂(θ)p = p0 ≤ max supp χ̂(θ). Then there exists a Bayes-plausible
distribution χb(θ) with supp χb(θ) ⊆ {min supp χ̂(θ), max supp χ̂(θ)}; this χb(θ) is a mean-
preserving spread of χ̂ in the sense of Machina and Pratt (1997), and by Machina and Pratt
(1997) Theorem 3, in the usual stochastic dominance sense as well.

By Lemma 3, w(p) + π(p)− ḡ(θ)c(p) must coincide on supp χ̂(θ) with its concavifica-
tion, which is affine on [min supp χ̂(θ), max supp χ̂(θ)]. Since this interval contains p0, the
expectation of w(p) + π(p)− ḡ(θ)c(p) under χb(θ) must be equal to its concavification’s
value at p0. It follows from Kamenica and Gentzkow (2011) Online Appendix Proposition
3 that if we replace w with w + π in the ironed problem (12), it is solved by χb : Θ→ X.

Then define χ∗(θ) = χb(min{θ′|ḡ(θ′) = ḡ(θ)}). By definition, χ∗ is binary, and χ∗(θi) =

χ∗(θi−1) whenever ḡ(θi) = ḡ(θi−1). Since the type-specific ironed problems in (12) are the
same for each θ, θ′ with ḡ(θ) = ḡ(θ′), it follows that if we replace w with w+π in the ironed
problem (12), it is solved by χ∗. Then by Proposition 3, if we replace w with w + π in the
principal’s reduced problem from the basic model (4), it is solved by χ∗; equivalently, χ∗

solves (S.4). Moreover, by Lemma 1 (i), χ∗ is Blackwell-monotone.
Now by Proposition 1, χ is Blackwell-monotone. Then since for each i ∈ {2, . . . , N}, we

have Eχ∗(θi−1)
[c(p)] = Eχb(θj−1)

[c(p)] for some j ≥ i, it follows that

Eχ∗(θi−1)
[c(p)] = Eχb(θj−1)

[c(p)] ≥ Eχ̂(θj−1)
[c(p)] ≥ Eχ(θj)

[c(p)] ≥ Eχ(θi)
[c(p)],

since χb(θj−1) is a mean-preserving spread of χ̂(θj−1). Then by Proposition S.1, χ∗ solves
the principal’s problem when the researcher is intrinsically motivated; since χ∗ is binary
and Blackwell-monotone, (i) follows. And since χ∗ solves the principal’s reduced problem
(4) from the basic model with w replaced by w + π, (ii) follows identically to the proof of
Theorem 2. �

Proof of Proposition S.2 (Results-Based Implementation with and Intrinsically Moti-
vated Researcher)

By Theorem 3, when the researcher is not intrinsically motivated, there exists a methods-
based contract ψχ which implements χ and such that Eχ(θ)[ψχ(p)] ≤ T̂(χ(θ)) for any
results-based contract T̂ that implements χ. Then define ψχ(p) ≡ ψχ(p)− (π(p)−π(p0))+
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Π(χ(θ1)) − C(χ(θ1), θ1). When a type-θ intrinsically motivated researcher accepts the
results-based contract ψχ, she solves

max
τ∈∆([0,1])

{Eτ[ψχ(p) + π(p)− π(p0)− θc(p)] s.t. Eτ p = p0}

= max
τ∈∆([0,1])

{Eτ[ψχ(p)− θc(p)] + Π(χ(θ1))− C(χ(θ1), θ1) s.t. Eτ p = p0}.

Now by Theorem 3,

χ(θ) ∈ arg max
τ∈∆([0,1])

{Eτ[ψχ(p)− θc(p)] s.t. Eτ p = p0}

= arg max
τ∈∆([0,1])

{Eτ[ψχ(p)− θc(p)] + Π(χ(θ1))− C(χ(θ1), θ1) s.t. Eτ p = p0}.

It follows that when a type-θ intrinsically motivated researcher accepts the results-based
contract ψχ, her expected payoff from conducting the experiment χ(θ) is weakly larger
than her expected payoff from conducting any other experiment.

Now let r(θ) = Eχ(θ)[ψχ(p)]; it follows immediately that (χ, r) satisfies (ĨCθ). More-
over, since ψχ implements χ when the researcher is not intrinsically motivated, we have
Eχ(θ1)

[ψχ(p)] ≥ C(χ(θ1), θ1); then

r(θ1) + Π(χ(θ1))− C(χ(θ1), θ1) = Eχ(θ1)
[ψχ(p)− (π(p)− π(p0))] + Π(χ(θ1))− C(χ(θ1), θ1)

+ Π(χ(θ1))− C(χ(θ1), θ1)

= Eχ(θ1)
[ψχ(p)]− C(χ(θ1), θ1) + Π(χ(θ1))− C(χ(θ1), θ1)

≥ Π(χ(θ1))− C(χ(θ1), θ1)

and (χ, r) satisfies (ĨRθ) for θ = θ1. Then by Lemma S.1, (χ, r) satisfies (ĨRθ). It follows
that when a type-θ intrinsically motivated researcher accepts the results-based contract ψχ,
her expected payoff from conducting the experiment χ(θ) is weakly larger than her payoff
from conducting any experiment when she refuses the contract.

Then ψχ implements χ when the researcher is intrinsically motivated. Now suppose
that T implements χ when the researcher is intrinsically motivated. Then by the revelation
principle, so does the direct revelation contract (χ, t) with t(θ) = T(χ(θ)). Then (χ, t) must
satisfy (ĨCθ) and (ĨRθ). Now define t0 : Θ → R by t0(θ) = t(θ) + Π(χ(θ))− (Π(χ(θ1))−
C(χ(θ1), θ1)). Then since (χ, t) satisfies (ĨCθ), (χ, t0) satisfies (ICθ). By definition of χ, for

7



any θ ∈ Θ,

Π(χ(θ))− C(χ(θ), θ) ≥ Π(χ(θ1))− C(χ(θ1), θ)

= Π(χ(θ1))− C(χ(θ1), θ1) + (θ1 − θ)Eχ(θ1)
[c(p)]

≥ Π(χ(θ1))− C(χ(θ1), θ1).

Then since (χ, t) satisfies (ĨRθ), (χ, t0) satisfies (IRθ). Then (χ, t0) implements χ when the
researcher is not intrinsically motivated; by the taxation principle, so does T0 : X → R with

T0(τ) =

{
t0(θ), τ = χ(θ);

0, τ /∈ χ(Θ).

Then by Theorem 3, we have Eχ(θ)[ψχ(p)] ≤ T0(χ(θ)) = t0(θ). Then by construction,

Eχ(θ)[ψχ(p)] = Eχ(θ)[ψχ(p)]−Π(χ(θ)) + Π(χ(θ1))− C(χ(θ1), θ1)

≤ t0(θ)−Π(χ(θ)) + Π(χ(θ1))− C(χ(θ1), θ1)

= t(θ) = T(χ(θ)),

as desired. �

S.2 Contingency Fees and Failed Settlement Negotiations

As discussed in Section 5.2, plaintiff’s attorneys are often compensated for their work
using a contingency fee schedule which offers payment as a function of the amount recov-
ered from the defendant. Here, I extend the example from the main text to allow for some
probability that settlement negotiations break down and the parties proceed to trial.

Just as before, adopt the accounting convention that observable costs are assigned to
the principal, and let the net settlement amount σ be a strictly increasing function of the
posterior probability p that the defendant is liable. In addition, let the probability r that
no settlement will be reached, the probability q that the plaintiff will win at trial, and the
attorney’s observable costs co also be real-valued functions of p, with r(p) < 1 for each p.
Finally, suppose that when liability is certain, the probability q(1) of winning at trial is one,
the gross settlement σ(1) + co(1) is equal to the damages that would be awarded at trial,
and the attorney’s expenses co(1) are at least as high as the expenses she would incur for
any other result.

Then the expected payment (net of observable costs) to an attorney who accepts the
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contingency fee schedule φ and produces result p is

ψφ(p) ≡ r(p)(q(p)φ(σ(1) + co(1)− co(p))− (1− q(p))co(p)) + (1− r(p))φ(σ(p)). (S.6)

Thus, as in the example from the main text, the contingency fee schedule φ offers the same
incentives for pretrial information acquisition as the results-based contract ψφ. Proposition
S.3 shows that just as before, the fact that the net settlement σ is one-to-one ensures that
the two types of contracts are equivalent.

Proposition S.3 (Equivalence of Results-Based and Contingency Fee Contracting). In the
setting of Section S.2, the classes of results-based contracts and contingency fee schedules are equiv-
alent: For every contingency fee φ, there is a results-based contract ψφ that yields the same expected
payment for any experiment, and for every results-based contract ψ, there is a contingency fee φψ

that yields the same expected payment for any experiment.

Proof. The first part follows immediately from letting ψφ be as in (S.6). For the second part,
choose

φψ(x) ≡
{

ψ(σ−1(x))−r(σ−1(x))(q(σ−1(x))ψ(1)−(1−q(σ−1(x)))co(σ−1(x)))
1−r(σ−1(x)) , x ≤ σ(1)

ψ(1), x > σ(1).

Since co(1) ≥ co(p) for each p ∈ [0, 1], φψ(σ(1) + co(1)− co(p)) = ψ(1). Then from (S.6), if
an attorney produces result p, she receives expected payment

r(p)(q(p)φψ(σ(1) + co(1)− co(p))− (1− q(p))co(p)) + (1− r(p))φψ(σ(p))

= r(p) (q(p)ψ(1)− (1− q(p))co(p))

+ (1− r(p))
(

ψ(p)− r(p)(q(p)ψ(1)− (1− q(p))co(p))
1− r(p)

)
= ψ(p),

as desired.

S.3 Characterization Without Semicontinuity

The next two lemmas allow the assumption of upper semicontinuity to be dropped
in Proposition 1. First, Lemma S.3 shows in the binary-state context that any solution
to a persuasion problem remains a solution when the value function is replaced by its
upper semicontinuous hull. Second, Lemma S.4 shows that the sum of a function’s upper
semicontinuous hull and another continuous function is the upper semicontinuous hull
of the sum of both functions. This ensures that greater additive concavity is preserved
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by taking upper semicontinuous hulls. Together, Lemmas S.3 and S.4 allow us to apply
Proposition 4 to the upper semicontinuous hulls of the value functions in the two problems
whose solutions we wish to compare in Proposition 1.

Lemma S.3 (Characterization Without Semicontinuity in Binary-State Problems). Let v̄ be
the upper semicontinuous hull of v : [0, 1] → R, i.e., v̄(p) ≡ max{z|(p, z) ∈ cl(hypo(v))}; and
let V̄ be the concavification of v̄. Suppose that p0 ∈ (0, 1). If τ∗ ∈ arg maxτ∈∆([0,1]){Eτv(p) s.t. Eτ p =

p0}, then τ∗ ∈ arg maxτ∈∆([0,1]){Eτ v̄(p) s.t. Eτ p = p0} and Eτ∗v(p) = V̄(p0).

Proof. By Lemma 2 and Kamenica and Gentzkow (2011) Online Appendix Propositions 3
and 4, either (i) V̄(p0) = v̄(p0), or (ii) there exist p, p ∈ [0, 1] with p < p0 < p such that

V̄(p0) =
p−p0
p−p v̄(p) +

p0−p
p−p v̄(p).

First suppose that (i) holds. Since (p0, v̄(p0)) ∈ cl(hypo(v)), there exists a sequence
{(yn, zn)}∞

n=1 ⊂ hypo(v) such that (yn, zn) → (p0, v̄(p0)). Then either (i(a)) there exists M
such that yn < p0 for all n ≥ M; (i(b)) there exists M such that yn > p0 for all n ≥ M; (i(c))
there does not exist M such that yn 6= p0 for all n ≥ M; or (i(d)) there exists M such that
yn 6= p0 for all n ≥ M, but neither (i(a)) nor (i(b)) hold.

If (i(c)) holds, there exists a subsequence {(ynk , znk)}∞
k=1 such that pnk = p0 for all k.

Then by Kamenica and Gentzkow (2011) Online Appendix Proposition 3 we have

V̄(p0) ≥ Eτ∗ v̄(p) ≥ Eτ∗v(p) = max
τ∈∆([0,1])

{Eτv(p) s.t. Eτ p = p0} ≥ v(p0) ≥ znk

⇒ V̄(p0) ≥ Eτ∗ v̄(p) ≥ Eτ∗v(p) = max
τ∈∆([0,1])

{Eτv(p) s.t. Eτ p = p0} ≥ v(p0) ≥ V̄(p0)

⇒ V̄(p0) = Eτ∗ v̄(p) = Eτ∗v(p).

If (i(a)) or (i(d)) holds, there exists a subsequence {(ynk , znk)}∞
k=1 such that ynk < p0 for

all k; then let y = p0 and y = 1+p0
2 and define (y

k
, zk) = (ynk , znk) and (yk, zk) = (y, v(y)).

Then limk→∞(y
k
, zk) = (y, v̄(y)) and y−p0

y−y v̄(y) +
p0−y
y−y v̄(y) = v̄(p0) = V̄(p0).

If (i(b)) holds, there exists a subsequence {(ynk , znk)}∞
k=1 such that ynk > p0 for all k;

then let y = p0 and y = p0
2 and define (yk, zk) = (ynk , znk) and (y

k
, zk) = (y, v(y)). Then

limk→∞(yk, zk) = (y, v̄(y)) and y−p0
y−y v̄(y) +

p0−y
y−y v̄(y) = v̄(p0) = V̄(p0).

Suppose instead that (ii) holds. Then let y = p and y = p; it follows that y−p0
y−y v̄(y) +

p0−y
y−y v̄(y) = V̄(p0). By definition of v̄, (y, v̄(y)) ∈ cl(hypo(v)); since y < p0, (y, v̄(y)) ∈

cl(hypo(v))∩ ([0, p0)×R); since ([0, p0)×R) is open as a subset of [0, 1]×R, cl(hypo(v))∩
([0, p0)×R) = cl(hypo(v) ∩ ([0, p0)×R)). Then there exists a sequence {(y

n
, zn)}∞

n=1 ⊂
hypo(v) ∩ ([0, p0) × R) such that (y

n
, zn) → (y, v̄(y)). By symmetry, there also exists a

sequence {(yn, zn)}∞
n=1 ⊂ hypo(v) ∩ ((p0, 1]×R) such that (yn, zn)→ (y, v̄(y)).

10



It follows that if either (i(a)), (i(b)), (i(d)), or (ii) hold, since v̄(p) ≥ v(p) for all p by
definition, we have

yn−p0
yn−y

n
v̄(y

n
) +

p0−y
n

yn−y
n
v̄(yn) ≥

yn−p0
yn−y

n
v(y

n
) +

p0−y
n

yn−y
n
v(yn) ≥

yn−p0
yn−y

n
zn +

p0−y
n

yn−y
n
zn

lim sup
n→∞

yn−p0
yn−y

n
v̄(y

n
) +

p0−y
n

yn−y
n
v̄(yn) ≥ lim sup

n→∞

yn−p0
yn−y

n
v(y

n
) +

p0−y
n

pn−y
n
v(yn) ≥ lim sup

n→∞

yn−p0
yn−y

n
zn +

p0−y
n

yn−y
n
zn;

lim sup
n→∞

yn−p0
yn−y

n
v̄(y

n
) +

p0−y
n

yn−y
n
v̄(yn) =

(
lim

n→∞

yn−p0
yn−y

n

)(
lim sup

n→∞
v̄(y

n
)

)
+ lim

n→∞

( p0−y
n

yn−y
n

)(
lim sup

n→∞
v̄(yn)

)
≤ y−p0

y−y v̄(y) +
p0−y
y−y v̄(y) (by upper semicontinuity of v̄);

⇒ y−p0
y−y v̄(y) +

p0−y
y−y v̄(y) ≥ lim sup

n→∞

yn−p0
yn−y

n
v(y

n
) +

p0−y
n

yn−y
n
v(yn) ≥

y−p0
y−y v̄(y) +

p0−y
y−y v̄(y)

⇒ V̄(p0) = lim sup
n→∞

yn−p0
yn−y

n
v(y

n
) +

p0−y
n

pn−y
n
v(yn).

By Kamenica and Gentzkow (2011) Online Appendix Proposition 3, V̄(p0) ≥ Eτ∗ v̄(p).
Then we have

Eτ∗v(p) = sup
τ∈∆([0,1])

{Eτv(p) s.t. Eτ p = p0} ≥ sup
m≥n

{
ym−p0
ym−y

m
v(y

m
) +

p0−y
m

ym−y
m

v(ym)
}

for all n;

⇒ V̄(p0) ≥ Eτ∗ v̄(p) ≥ Eτ∗v(p) ≥ lim sup
n→∞

yn−p0
yn−y

n
v(y

n
) +

p0−y
n

yn−y
n
v(yn) = V̄(p0),

⇔ V̄(p0) = Eτ∗ v̄(p) = Eτ∗v(p).

The claim follows.

Lemma S.4. Let S ⊆ Rn, and for v, u : S→ R, let v and v + u be the upper semicontinuous hulls
of v and v + u, respectively. If u is continuous, then v + u = v + u.

Proof. By definition, v (resp., v + u) is the smallest upper semicontinuous function that
majorizes v (resp., v + u). Since u is continuous, v + u is upper semicontinuous; since v
majorizes v, v + u majorizes v + u. It follows that v + u majorizes v + u. Then for each
p ∈ S, we have v(p) + u(p) ≤ v + u(p) ≤ v(p) + u(p). It follows from the first inequality
that v∗ ≡ v + u− u majorizes v, and from the second that v majorizes v∗. Moreover, since
v + u is upper semicontinuous and u is continuous, v∗ is upper semicontinuous. Then we
must have v = v∗, since by definition, v is the smallest upper semicontinuous function that
majorizes v. It follows that v + u = v∗ + u = v + u, as desired.

S.4 Extended-Real Valued Costs

In many settings, the researcher’s experimentation technology may not allow her to
learn the state of the world with certainty. In particular, as mentioned in the main text, an
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infinite cost of certainty is a feature of several posterior-separable cost functions discussed
in the literature. These include the cost of Wald (1945) sequential sampling (Morris and
Strack, 2019), log-likelihood ratio costs (Pomatto et al., 2018), and the total information cost
function of Bloedel and Zhong (2021). Each is defined by a measure of uncertainty which
takes values in the affinely extended real numbers R, but is finite on the interior of the
set of posterior beliefs. Consequently, when these costs are part of a Bayesian persuasion
problem, that problem’s value function will also take values in R.

In Section S.4.1, I show that the characterization results for general persuasion problems
from the main text (Propositions 1, 2 and 4) each hold in the extended real-valued setting.
In doing so, I rely on Yoder (2021), which shows that extended real-valued persuasion
problems are well behaved. It follows that allowing for an infinite cost of certainty has
only a minor effect on my main results: The optimal contract implements (and results-
based implementation requires) a choice function which is feasible, in the sense that it only
produces results which have finite costs.

Formally, suppose we modify the model by letting H be a function from [0, 1] to R ∪
{−∞} which is finite on (0, 1). As before, H is continuous and strictly concave, and is
differentiable on (0, 1). Say that an experiment choice function χ : Θ → X is feasible if for
each θ, H is finite on the support of χ(θ). Then we have the following:

Proposition S.4. Suppose that the cost of certainty may be infinite: H may take the value −∞ at
0 and 1, but is finite on (0, 1). Then

i. (Theorem 1) The principal has an optimal methods-based contract which implements a binary,
feasible, Blackwell-monotone experiment choice function χ∗;

ii. (Theorem 2) χ∗ exhibits no distortion at the top, garbling everywhere else, and distortion lowers
cost to the researcher and value for the principal;

iii. (Theorem 3) Any binary, feasible, Blackwell-monotone experiment choice function can be imple-
mented with a results-based contract, and that results-based contract cannot be outperformed
by a methods-based contract; and

iv. (Theorem 4) If χ is not Blackwell-monotone and feasible, it cannot be implemented by a results-
based contract.

S.4.1 Characterization Results for Extended-Real Valued Persuasion Problems

Proposition S.5 extends the general additive concavity comparative static from the main
text (Proposition 4) to extended real-valued problems. Lemmas S.5 and S.6 do the same for
Lemmas S.3 and S.4, respectively. Finally, Propositions S.6 and S.7 use these results to give
versions of Propositions 1 and 2 that accommodate an infinite cost of certainty.
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For a set S, let aff(S) denote its affine hull. For a function v : S→ R, let dom(v) ≡ {s ∈
S|v(s) ∈ R} denote its effective domain.

Proposition S.5 (Additive Convexity and Monotonicity in Extended Real-Valued Prob-
lems). Suppose that S ⊆ Rn, that v0, v1 : S → R ∪ {−∞} are upper semicontinuous, and
that v0 is additively more concave than v1. Then for any p0 ∈ ri(dom v0) ∩ ri(dom v1), and any
solutions to the persuasion problems

τ∗0 ∈ arg max
τ∈∆(S)

{Eτv0(p) s.t. Eτ p = p0}, τ∗1 ∈ arg max
τ∈∆(S)

{Eτv1(p) s.t. Eτ p = p0},

we have supp τ∗1 ∩ conv(supp τ∗0 ) ⊆ ext(conv(supp τ∗0 )).

Proof. The proof proceeds identically to the proof of Proposition 4 in the main text, relying
on Lemma 2 in Yoder (2021) instead of Lemma 3 in the main text, except that in order
to show equation (15), we must also show that v∆ is finite on supp τ∗0 by inserting the
following passage immediately after equation (14):

By Lemma 2 in Yoder (2021), conv(supp τ∗0 ) ⊆ dom V0 and V0 coincides with v0 on
supp τ∗0 ; hence, supp τ∗0 ⊆ dom v0. Then since v0 = v1 + v∆ and neither v1 nor v∆ map to
∞, it must be that supp τ∗0 ⊆ dom v∆.

Lemma S.5 (Characterization Without Semicontinuity in Extended Real-Valued Binary-S-
tate Problems). Suppose p0 ∈ (0, 1), and that v : [0, 1] → R ∪ {−∞} is finite on (0, 1); let
v̄ be the upper semicontinuous hull of v, i.e., v̄(p) ≡ max{z|(p, z) ∈ cl(hypo(v))}; and let
V̄ be the concavification of v̄. If τ∗ ∈ arg maxτ∈∆([0,1]){Eτv(p) s.t. Eτ p = p0}, then τ∗ ∈
arg maxτ∈∆([0,1]){Eτ v̄(p) s.t. Eτ p = p0} and Eτ∗v(p) = V̄(p0).

Proof. Follows identically to the proof of Lemma S.3, replacing R with R when considering
case (ii), relying on Yoder (2021) Proposition 2 instead of Kamenica and Gentzkow (2011)
Online Appendix Propositions 3 and 4.

Lemma S.6. Let S ⊆ Rn, and for v, u : S → R ∪ {−∞}, let v and v + u be the upper semicon-
tinuous hulls of v and v + u, respectively. If u is continuous, then v + u = v + u.

Proof. The proof proceeds analogously to that of Lemma S.4. By definition, v (resp., v + u)
is the smallest upper semicontinuous function that majorizes v (resp., v + u). Since u is
continuous, v + u is upper semicontinuous; it follows that v + u majorizes v + u. Hence,
for each p ∈ S, we have

v(p) + u(p) ≤ v + u(p) ≤ v(p) + u(p). (S.7)
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Then consider

v∗(x) ≡
{

v + u(x)− u(x), x ∈ dom(u)
v(x), x /∈ dom(u).

It follows from the first inequality in (S.7) that v∗ majorizes v, since v(x) ≥ v(x) for each
x ∈ S, and from the second inequality in (S.7) that v majorizes v∗.

Moreover, v∗ is upper semicontinuous: Since u is continuous, v + u(x) − u(x) is up-
per semicontinuous on dom(u), and dom(u) = u−1((−∞, ∞)) is open in S. Then for
all y ∈ dom(u) and yn → y, lim supn→∞ v∗(yn) = lim supn→∞ v + u(yn) − u(yn) ≤
(lim supn→∞ v + u(yn)) + (lim supn→∞−u(yn)) ≤ v + u(y) − u(y) = v∗(y). And for all
y /∈ dom(u) and yn → y, lim supn→∞ v∗(yn) ≤ lim supn→∞ v(yn) ≤ v(y) = v∗(y), since v
is upper semicontinuous and majorizes v∗. Upper semicontinuity of v∗ follows from, e.g.,
Aliprantis and Border (2013) Lemma 2.42.

Then we must have v = v∗, since by definition, v is the smallest upper semicontinuous
function that majorizes v. It follows that v + u = v∗ + u = v + u, as desired.

Proposition S.6 (Additive Convexity and Monotonicity in Extended Real-Valued Prob-
lems). Suppose that v0, v1 : [0, 1] → R ∪ {−∞} are finite on (0, 1), and that v0 is additively
more concave than v1. Then for any p0 ∈ (0, 1), and any solutions to the persuasion problems

τ∗0 ∈ arg max
τ∈∆([0,1])

{Eτv0(p) s.t. Eτ p = p0}, τ∗1 ∈ arg max
τ∈∆([0,1])

{Eτv1(p) s.t. Eτ p = p0},

τ∗1 is weakly Blackwell-more informative than (i.e., a mean-preserving spread of) τ∗0 .

Proof. Follows identically to the proof of Proposition 1 in the main text, relying on Propo-
sition S.5 instead of Proposition 4, and Lemmas S.5 and S.6 instead of Lemmas S.3 and
S.4.

Proposition S.7 (A Necessary and Sufficient Secant Line Condition for Extended Real-Val-
ued Problems). Suppose that v : [0, 1]→ R∪ {−∞} is an upper semicontinuous function which
is finite on (0, 1), and that p0 ∈ (0, 1). An experiment τ∗ which produces the pair of results
supp τ∗ = {p, p} solves the persuasion problem maxτ{Eτv(p) s.t. Eτ p = p0} if and only if the
secant line to v through (p, v(p)) and (p, v(p)) lies on or above the graph of v:

v(p) +
v(p)− v(p)

p− p
(p− p) ≥ v(p) for each p ∈ [0, 1]. (S.8)

Proof. Follows identically to the proof of Proposition 2 in the main text, relying on Lemma
2 in Yoder (2021) instead of Lemma 3.
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S.4.2 Proof of Proposition S.4

Observe that by modifying their proofs to rely on Proposition 1 instead of Proposition
S.6, Proposition 2 instead of Proposition S.7, and Kamenica and Gentzkow (2011) Online
Appendix Propositions 3 and 4 instead of Yoder (2021) Proposition 2, each of the lemmas
in Appendices A and B.2 of the main text can be extended to the setting of Proposition S.4.
With those lemmas thus extended, (i) and (ii) follow identically to the proofs of Theorems
1 and 2 in the main text. Furthermore, (iv) follows identically to the proof of Theorem 4 in
the main text, relying on Proposition S.6 instead of Proposition 1.

Finally, (iii) follows identically to the proof of Theorem 3 in the main text, relying on
Proposition S.7 instead of Proposition 2, with three exceptions. First, so that ψχ is finite at
the endpoints of the unit interval, replace its definition as follows:

ψχ(p) ≡


sλ(p) + θλc(p), p ∈ [y

λ
, yλ];

si(p) + θic(p), p ∈ [y
i
, y

i−1
) ∪ (yi−1, yi], ∀i ∈ {λ + 1, . . . , N};

min{sN(p) + θNc(p), 0}, p ∈ [0, y
N
) ∪ (yN, 1].

Second, to account for the new definition of ψχ, replace (26) as follows:

ψχ(p)− θic(p) ≤ sj(p) + (θj − θi)c(p) (with equality when j < N).

Finally, replace the continuity argument after (22) with the following passages showing
that ψχ is upper semicontinuous and finite-valued:

ψχ is upper semicontinuous: First note that {si}N
i=λ are linear, hence continuous. By

definition we have si(yi−1
)+ θic(yi−1

) = si−1(yi−1
)+ θi−1c(y

i−1
) and si(yi−1)+ θic(yi−1) =

si−1(yi−1) + θi−1c(yi−1) for each i ∈ {λ + 1, . . . , N}; since H (and thus c) is continuous,
it follows that ψχ is continuous on [y

N
, yN]. Since sN(p) + θNc(p) is continuous, so is

min{sN(p) + θNc(p), 0}; it follows that ψχ is continuous on [0, y
N
) ∪ (yN, 1] as well. Up-

per semicontinuity then follows from the fact that limp↑y
N

ψχ(p) = limp↑y
N

min{sN(p) +
θNc(p), 0} = min{sN(yN

)+ θNc(y
N
), 0} ≤ sN(yN

)+ θNc(y
N
) = ψχ(yN

) and limp↓yN
ψχ(p) =

limp↓yN
min{sN(p) + θNc(p), 0} = min{sN(yN) + θNc(yN), 0} ≤ sN(yN) + θNc(yN) =

ψχ(yN).
ψχ takes finite values, and hence is a results-based contract: Since H is continuously

differentiable on (0, 1) and p0 ∈ (0, 1), sλ takes finite values. Moreover, since χ is feasible,
for each i ∈ {λ + 1, . . . , N}, if si−1 takes finite values, so does si. It follows by induction
that si takes finite values for each i ∈ {λ, . . . , N}. Furthermore, since χ is feasible, we have
{y

N
, yN} ⊂ dom H; since (0, 1) ⊆ dom H by assumption, it must be that [y

N
, yN] ⊂ dom H.

Then ψχ is finite on [y
N

, yN]. Since c(p) > −∞ for each p ∈ [0, 1], min {0, sN(p) + θNc(p)}
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is finite for each p ∈ [0, 1]; it follows that ψχ is finite on [0, y
N
) ∪ (yN, 1] as well.
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