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S.1 Oblivious Mechanisms Without Anonymous Respondents

Here, we provide a counterexample showing that Theorem 2 does not hold when respondents
are not anonymous.

Suppose that the database consists of the results of COVID-19 tests among three members of a
university’s economics department, and that the decision maker is another faculty member who is
interested in knowing the department’s positivity rate so that he can decide what kind of precau-
tions to take. Thus, the data is binary (where 1 indicates a positive test and 0 indicates a negative
test) and the population statistic ω is a count.

Two of the tested faculty — respondents 2 and 3 — are married to one another, and so their
test results are highly correlated. Specifically, conditional on the first two faculty members’ results
(θ1, θ2), the probability that θ3 = θ2 is 1 − δ for some small δ > 0; i.e., we have

π0((0, 0, 0)) = π0((1, 1, 1)) = (1 − δ)/3 and π0((0, 1, 1)) = π0((1, 0, 0)) = (1 − δ)/6,

but π0((0, 0, 1)) = π0((1, 1, 0)) = δ/3 and π0((0, 1, 0)) = π0((1, 0, 1)) = δ/6.

For small enough δ, a non-oblivious mechanism can induce posteriors about the population
statistic that are inaccessible to ϵ-differentially private oblivious mechanisms without changing the
level of privacy loss. In particular, in the limit δ → 0, a population statistic of ω = 1 always cor-
responds to the database (1, 0, 0), while a population statistic of ω = 2 always corresponds to the
database (0, 1, 1). But these databases differ in all three entries, so differential privacy only indirectly
restricts the amount that the posterior probability of one can differ from the posterior probability of
the other. This allows the designer to provide much more information about whether the popula-
tion statistic ω is 1 rather than 2.

Specifically, writing each π ∈ ∆({0, 1}3) as the vector[
π((0, 0, 0)) π((1, 0, 0)) π((0, 1, 0)) π((0, 0, 1)) π((1, 1, 0)) π((1, 0, 1)) π((0, 1, 1)) π((1, 1, 1))

]′ ,

*Schmutte: University of Georgia, Terry College of Business, John Munro Godfrey, Sr. Department of Economics; E-
mail: schmutte@uga.edu. Yoder: University of Georgia, Terry College of Business, John Munro Godfrey, Sr. Department
of Economics; E-mail: nathan.yoder@uga.edu.

1



consider the posterior

π̂ =
ϕ ◦ π0

ϕ · π0
, where ϕ =

[
e−2ϵ e−3ϵ e−ϵ e−ϵ e−2ϵ e−2ϵ 1 e−ϵ

]′
,

where ◦ denotes the elementwise (Hadamard) product. This posterior is ϵ-differentially private:
π̂ ∈ K(ϵ, π0). It achieves the upper privacy bound π((1,0,0))/π0((1,0,0))

π((0,0,0))/π0((0,0,0)) = eϵ between (0, 0, 0) and

(1, 0, 0), and the lower privacy bound π((1,1,1))/π0((1,1,1))
π((0,1,1))/π0((0,1,1)) = e−ϵ between (0, 1, 1) and (1, 1, 1), while

achieving the privacy bounds between other databases in a way that distinguishes between (1, 0, 0)
and (0, 1, 1) as much as possible.1 As δ → 0, its third through sixth entries vanish along with the
corresponding entries of π0. Hence, its projection Pπ̂ onto ∆(Ω) approaches

µ̂ =
ψ ◦ µ0

ψ · µ0
, where ψ =

[
e−ϵ e−3ϵ 1 e−2ϵ

]′
.

This posterior about the population statistic is outside of KΩ(ϵ, µ0), and so cannot be induced with
an oblivious mechanism: it exceeds the upper privacy bound µ(2)/µ0(2)

µ(1)/µ0(1)
≤ eϵ between states ω = 1

and ω = 2. Consequently, when δ is small enough, and θ2 and θ3 are very highly correlated,
oblivious mechanisms are not always optimal.2

S.2 Differential Privacy and Learning

Here, we offer an interpretation of differential privacy as a bound on Bayesian updating. Propo-
sition S.1 shows that differential privacy is equivalent to a bound on the amount that learning the
mechanism’s output can cause an observer who believes respondents’ types are independent to up-
date their beliefs about a specific respondent’s type θn. In particular, differential privacy limits the
proportional change in the odds that the respondent is type 1. The argument mirrors that of Theo-
rem 6.1 in Kifer and Machanavajjhala (2014). However, Proposition S.1 differs in that it bounds the
change in the odds that the respondent has one type instead of another, rather than the change in
the odds that it has a certain type instead of being absent from the data altogether.

Proposition S.1 (Interpretations of Differential Privacy). The following are equivalent:

i. (S, m) is ϵ-differentially private.

ii. If an agent’s prior π̂0 ∈ ∆(Θ) is a product distribution which places positive probability on both θn = 1
and θn = 0, then after observing a realization s from (S, m), the log odds of the event {θ : θn = 1}

1Specifically, it achieves the upper privacy bound between (1, 0, 0) and both (1, 1, 0) and (1, 0, 1), between (0, 0, 0) and
both (0, 1, 0) and (0, 0, 1), between (0, 1, 0) and (0, 1, 1), between (0, 1, 0) and (0, 1, 1), between (1, 1, 0) and (1, 1, 1), and
between (1, 0, 1) and (1, 1, 1); and the lower privacy bound between (0, 1, 0) and (1, 1, 0) and between (0, 0, 1) and (1, 0, 1).

2Consider, for instance, a decision maker who takes action z when his belief about the state is in KΩ(ϵ, µ0), but takes
a different action, x, when his belief about the population statistic is in some neighborhood of µ̂. (To see how this
might occur, suppose that distinguishing between ω = 1 and ω = 2 is important for the decision maker’s choice, but
distinguishing between the other values of ω is not, e.g., because action x gives a much worse payoff than action z when
ω = 1, a somewhat better payoff when ω = 2, and the same payoff when ω ∈ {0, 3}.) Then any oblivious ϵ-differentially
private mechanism does not offer any useful information to the decision maker, but a non-oblivious ϵ-differentially
private mechanism that induces π̂ does.
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under the agent’s posterior π̂ can differ by no more than ϵ from its log odds under π̂0:∣∣∣∣log
(

π̂({θ : θn = 1})
π̂({θ : θn = 0})

)
− log

(
π̂0({θ : θn = 1})
π̂0({θ : θn = 0})

)∣∣∣∣ ≤ ϵ.

Proof. ((i)⇒(ii)): Suppose that (S, m) is differentially private and that an agent’s prior π̂0 is a product
distribution. Then for t ∈ {0, 1} we can write

π̂({θ : θn = t}) = ∑θ:θn=t m(s|θ)π̂0(θ)

∑θ∈{0,1}N m(s|θ)π̂0(θ)
=

∑θ:θn=t m(s|θ)π̂0({θ̂ : θ̂n = t})π̂0({θ̂ : θ̂−n = θ−n})
∑θ∈{0,1}N m(s|θ)π̂0(θ)

Hence∣∣∣∣log
(

π̂({θ : θn = 1})
π̂({θ : θn = 0})

)
− log

(
π̂0({θ : θn = 1})
π̂0({θ : θn = 0})

)∣∣∣∣ =
∣∣∣∣∣log

(
∑θ:θn=1 m(s|θ)π̂0({θ̂ : θ̂−n = θ−n})
∑θ:θn=0 m(s|θ)π̂0({θ̂ : θ̂−n = θ−n})

)∣∣∣∣∣
=

∣∣∣∣∣log

(
∑θ−n∈{0,1}N−1 m(s|(1, θ−n))π̂0({θ̂ : θ̂−n = θ−n})
∑θ−n∈{0,1}N−1 m(s|(0, θ−n))π̂0({θ̂ : θ̂−n = θ−n})

)∣∣∣∣∣ .

Now we have(
min

θ−n∈{0,1}N−1

{
m(s|(1, θ−n))

m(s|(0, θ−n))

}) ∑
θ−n∈{0,1}N−1

m(s|(0, θ−n))π̂0({θ̂ : θ̂−n = θ−n})


≤ ∑

θ−n∈{0,1}N−1

m(s|(1, θ−n))π̂0({θ̂ : θ̂−n = θ−n})

≤
(

max
θ−n∈{0,1}N−1

{
m(s|(1, θ−n))

m(s|(0, θ−n))

}) ∑
θ−n∈{0,1}N−1

m(s|(0, θ−n))π̂0({θ̂ : θ̂−n = θ−n})

 ,

and so

min
θ−n∈{0,1}N−1

{
m(s|(1, θ−n))

m(s|(0, θ−n))

}
≤

∑θ−n∈{0,1}N−1 m(s|(1,θ−n))π̂0({θ̂:θ̂−n=θ−n})

∑θ−n∈{0,1}N−1 m(s|(0,θ−n))π̂0({θ̂:θ̂−n=θ−n})
≤ max

θ−n∈{0,1}N−1

{
m(s|(1, θ−n))

m(s|(0, θ−n))

}
;

⇒ log
(

∑θ−n∈{0,1}N−1 m(s|(1,θ−n))π̂0({θ̂:θ̂−n=θ−n})

∑θ−n∈{0,1}N−1 m(s|(0,θ−n))π̂0({θ̂:θ̂−n=θ−n})

)
≤ max

{∣∣∣∣log
(

min
θ−n∈{0,1}N−1

{
m(s|(1, θ−n))

m(s|(0, θ−n))

})∣∣∣∣ ,
∣∣∣∣log

(
max

θ−n∈{0,1}N−1

{
m(s|(1, θ−n))

m(s|(0, θ−n))

})∣∣∣∣} ≤ ϵ,

as desired.
((ii)⇒(i)): Let n ∈ {1, . . . , N} and let θ, θ′ ∈ Θ be such that θ−n = θ′−n. Let π̂0 be such that π̂0({θ̂ :

θ̂−n = θ−n}) = 1 and π̂0({θ̂ : θ̂n = 1}) ∈ (0, 1). Then for t ∈ {0, 1}, π̂0({θ : θn = t}) = π̂0(θ−n, t)
and π̂({θ : θn = t}) = m(s|(t,θ−n))π̂0(θ−n,t)

m(s|(t,θ−n))π̂0((t,θ−n))+m(s|(1−t,θ−n))π̂0((1−t,θ−n))
. Hence

ϵ ≥
∣∣∣∣log

(
π̂({θ : θn = 1})
π̂({θ : θn = 0})

)
− log

(
π̂0({θ : θn = 1})
π̂0({θ : θn = 0})

)∣∣∣∣ = ∣∣∣∣log
(

m(s|(1, θ−n))

m(s|(0, θ−n))

)∣∣∣∣ = ∣∣∣∣log
(

m(s|θ′)
m(s|θ)

)∣∣∣∣ .

Since this holds for any s ∈ S, (i) follows.
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S.3 Permutation-Invariant Mechanisms

Here, we prove Proposition 4 and characterize differential privacy for permutation-invariant
mechanisms.

In what follows, let ∼ be the permutation equivalence relation on Θ: θ ∼ θ′ ⇔ θ is a permutation
of θ′. By definition of ωθ , θ ∼ θ′ implies ωθ = ωθ′ . Let C denote the collection of equivalence classes
of ∼, and for each C ∈ C, let ωC denote the common value of ωθ across all θ ∈ C. For each θ ∈ Θ, let
Cθ denote its ∼-equivalence class. We say that two equivalence classes C, C′ ∈ C are adjacent if there
exist θ ∈ C and θ′ ∈ C′ such that for some i, θ−i = θ′−i but θi ̸= θ′i . Note that for any such pair θ, θ′,
θi must take the same value, which we denote t(C, C′); let n(C, C′) denote the number of entries of
θ that take this value.

For a permutation-invariant mechanism (S, m), there is a function ρ : C → ∆(S) such that for
every θ ∈ C ∈ C, m(·|θ) = ρ(·|C); we abuse notation and write (S, ρ) to denote such a mecha-
nism. Define the projection operator PC : ∆(Θ) → ∆(C) by PCπ(C) = ∑θ∈C π(θ), and the common
prior about the permutation class as β0 ≡ PCπ0. Then we can characterize differential privacy for
permutation-invariant mechanisms in terms of the posterior beliefs they induce about the permu-
tation equivalence class C, as follows.

Proposition S.2 (Differential Privacy for Permutation-Invariant Mechanisms). Suppose (S, σ) is an
oblivious data publication mechanism. Then the following are equivalent:

i. (S, ρ) is ϵ-differentially private.

ii.
∣∣∣log

(
ρ(s|C)
ρ(s|C′)

)∣∣∣ ≤ ϵ for each adjacent C, C′ ∈ C.

iii. For each posterior belief about the permutation class β ∈ ∆(C) induced by (S, ρ),∣∣∣log
(

β(C)
β(C′)

)
− log

(
β0(C)
β0(C′)

)∣∣∣ ≤ ϵ for each adjacent C, C′ ∈ C. (1)

Proof. ((i)⇒(ii)) For each adjacent C, C′ ∈ C, by definition there exist θ ∈ C, θ′ ∈ C′, and i ∈
{1, . . . , N} such that θi ̸= θ′i and θ−i = θ′−i. Then since (S, ρ) is ϵ-differentially private, for each
s ∈ S, |log (ρ(s|C)/ρ(s|C′))| = |log (ρ(s|Cθ)/ρ(s|Cθ′))| ≤ ϵ,; (ii) follows.

((ii)⇒(i)) If θ, θ′ ∈ {0, . . . , T}N are such that θ−i = θ′−i for some i, then either θ = θ′, in which
case (1) holds trivially, or Cθ and Cθ′ are adjacent, in which case (ii) implies that for each s ∈ S,
|log (ρ(s|Cθ)/ρ(s|Cθ′))| = |log (ρ(s|Cθ′)/ρ(s|Cθ))| ≤ ϵ, and hence, since (S, ρ) is permutation-
invariant, (1).

((ii)⇔(iii)) Follows from Bayes’ rule, since

β(C)
β(C′)

=
ρ(s|C)β0(C)

∑X∈C ρ(s|X)β0(X)

/
ρ(s|C′)β0(C′)

∑X∈C ρ(s|X)β0(X)
=

ρ(s|C)
ρ(s|C′)

β0(C)
β0(C′)

.

Let KC(ϵ, β0) denote the set of posterior beliefs about the permutation equivalence class β ∈
∆(C) that satisfy (1).
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Lemma S.1. The following are equivalent:

i. If the distribution ξ ∈ ∆(∆(C)) of posterior beliefs about the permutation equivalence class can be in-
duced by an ϵ-differentially private mechanism, it can be induced by an ϵ-differentially private oblivious
mechanism.

ii. KC(ϵ, β0) = PCK(ϵ, π0).

Proof. Follows identically to the proof of Lemma 9, relying on Proposition S.2 instead of Proposition
2.

Proof of Proposition 4 (Permutation-Invariant Mechanisms) Suppose π ∈ K(ϵ, π0). Then for each
adjacent C, C′ ∈ C, we have

PCµ(C) = ∑
θ∈C

π(θ) = ∑
θ∈C

1
n(C, C′) ∑

i:θi=t(C,C′)

π(θ)

=
1

n(C, C′)

N

∑
i=1

∑
θ:θi=t(C,C′),

θ∈C

π(θ) =
1

n(C, C′)

N

∑
n=1

∑
θ′ :θ

′
i=t(C′,C),

θ′∈C′

π((t(C, C′), θ′−i))

=
1

n(C, C′) ∑
θ′∈C′

∑
i:θ′i=t(C′,C)

π((t(C, C′), θ′−i)).

Since respondents are anonymous, π0(θ) = π0(θ′) whenever θ, θ′ ∈ C. It follows that for each
θ ∈ Θ, π0(θ) = β0(Cθ)/|Cθ |. Moreover, note that for each θ ∈ Θ, |Cθ | = N!/ ∏T

k=1 |{i|θi = k}|.
Consequently, for each θ′ with θ−i = θ′−i for some i, |Cθ | =

n(Cθ′ ,Cθ)
n(Cθ ,Cθ′ )

|Cθ′ |.
Then since π ∈ K(ϵ, π0), for each θ′ ∈ Θ, each C that is adjacent to Cθ′ , each i, and each s ∈ S,

we have

e−ϵπ(θ)
π0((t(C, Cθ′), θ−n))

π0(θ)
≤ π((t(C, Cθ′), θ′−i)) ≤ eϵπ(θ′)

π0((t(C, Cθ′), θ′−i))

π0(θ′)

e−ϵπ(θ′)
β0(C)|Cθ′ |
β0(Cθ′)|C|

≤ π((t(C, Cθ′), θ′−i)) ≤ eϵπ(θ′)
β0(C)|Cθ′ |
β0(Cθ′)|C|

e−ϵπ(θ)
β0(C)n(C, Cθ′)

β0(Cθ′)n(Cθ′ , C)
≤ π((t(C, Cθ′), θ′−i)) ≤ eϵπ(θ′)

β0(C)n(C, Cθ′)

β0(Cθ′)n(Cθ′ , C)

Hence, for each adjacent C, C′ ∈ C, we have

e−ϵ ∑
θ′∈C′

1
n(C′, C) ∑

i:θ′i=t(C′,C)
π(θ′)

β0(C)
β0(C′)

≤ PCπ(C) ≤ eϵ ∑
θ′∈C′

1
n(C′, C) ∑

i:θ′i=t(C′,C)
π(θ′)

β0(C)
β0(C′)

e−ϵ ∑
θ′∈C′

π(θ′)
β0(C)
β0(C′)

≤ PCπ(C) ≤ eϵ ∑
θ′∈C′

π(θ′)
β0(C)
β0(C′)

e−ϵPCπ(C′)
β0(C)
β0(C′)

≤ PCπ(C) ≤ eϵPCπ(C′)
β0(C)
β0(C′)

,

and so PCπ ∈ KC(ϵ, β0).

5



Hence, PCK(ϵ, π0) ⊆ KC(ϵ, β0). And since permutation-invariant ϵ-differentially private mech-
anisms are a subset of all ϵ-differentially private mechanisms, by Proposition S.2 and Lemma 5,
KC(ϵ, β0) ⊆ PCK(ϵ, π0). So PCK(ϵ, π0) = KC(ϵ, β0); the statement follows by Lemma S.1. □
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