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Abstract

This note shows that Bayesian persuasion problems still have solutions when the

cost of inducing some posteriors is infinite, e.g., when information has a constant marginal

cost. Consequently, the concavification approach of Kamenica and Gentzkow (2011)

can be applied to these settings.

In a Bayesian persuasion or information design problem (Kamenica and Gentzkow, 2011;
Kamenica, 2019), a sender chooses a Blackwell experiment on a set of states Ω to maximize
the expectation of some function v of the induced posterior belief. Kamenica and Gentzkow
(2011) show that this is equivalent to choosing a distribution of posterior beliefs τ whose
mean is the prior p0 ∈ ∆(Ω):

sup
τ∈∆(∆(Ω))

{Eτv(p) s.t. Eτ p = p0} (1)

Typically, the value function v is the sender’s interim payoff from a receiver’s use of her ex-
periment’s result to choose a risky action. Sometimes, this payoff is modified by a function
representing her cost of experimentation, as in Gentzkow and Kamenica (2014), or other
payoffs from generating a certain posterior, as in Yoder (2022).

Kamenica and Gentzkow (2011) show that when v is bounded, the problem has a so-
lution whenever v is upper semicontinuous. I show that this is also true when v is un-
bounded, or extended real-valued. This extends their results to settings where the sender
faces an infinite cost of inducing certain posteriors. These infinite costs are natural in many
settings: As Pomatto et al. (2020) point out, they are present in any application where the
sender faces a constant marginal cost of experimentation.
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Related literature

Among settings where some posteriors are infinitely costly to induce, the most heavily
studied are those where the sender has one of the log-likelihood ratio (LLR) cost functions
introduced by Pomatto et al. (2020). Specific cost functions in this class arise from foun-
dations like Wald (1945) sequential sampling (Morris and Strack, 2019) and indifference
to sequential learning (Bloedel and Zhong, 2021). In general, the LLR class is character-
ized by a cost of experimentation proportional to the Kullback-Leibler divergence between
the distributions of signals conditional on different states. By formulating the information
design problem as one of choosing those conditional signal distributions, Pomatto et al.
(2020) observe that a solution exists when the sender has LLR costs, since Kullback-Leibler
divergence is a lower semicontinuous function on the space of probability measures.

This note extends their observation beyond the LLR functional form. More generally,
my results show that we need not depart from the posterior-based approach of Kamenica
and Gentzkow (2011) to ensure that an extended real-valued information design problem
has a solution. Instead, we can rely directly on the value function’s upper semicontinuity
in the induced posterior belief, just as Kamenica and Gentzkow (2011) show we can in the
real-valued case.

Main results1

As authors such as Halac et al. (2022) and Doval and Skreta (2023) have noted, existence
of a solution to (1) follows immediately from two facts:

i. If f : S → R is upper semicontinuous and bounded, then when ∆(S) is given the
weak∗ topology, the mapping τ 7→

∫
f dτ is upper semicontinuous as well.2 (e.g.,

Aliprantis and Border (2006) Theorem 15.5)

ii. S is compact if and only if ∆(S) is. (e.g., Aliprantis and Border (2006) Theorem 15.11)

The key to this note is showing that (i) can be extended to the case where f takes the
value −∞, so long as its domain is compact.

Lemma 1. If f : S→ R∪ {−∞} is upper semicontinuous and S ⊆ ∆(Ω) is compact, then when
∆(S) is given the weak∗ topology, the mapping τ 7→

∫
f dτ is upper semicontinuous.

1Let R denote the affinely extended real numbers R ∪ {±∞}. For a set S, let cl(S) denote its closure;
conv(S), its convex hull; dim(S), its dimension; ri(S), its relative interior; and ∆(S), the set of Borel proba-
bility measures on S. For a function v : S → R, let dom(v) ≡ {s ∈ S|v(s) ∈ R} denote its effective domain;
Gr(v) ≡ {(s, v(s))|s ∈ dom(v)}, its graph; and hypo(v) ≡ {(s, y)|s ∈ dom(v), y ≤ v(s)}, its hypograph. For
a probability measure τ, let supp τ denote its support.

2The boundedness of v is also crucial to Kamenica and Gentzkow (2011)’s argument, which relies on the
compactness of the interesting part of v’s hypograph, H = {(p, z) ∈ hypo(v)|z ≥ inf v(p)}. (See the proof of
Proposition 3.1 in the online appendix to Kamenica and Gentzkow (2011).)
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Proof. Suppose that for {τn}∞
n=1 ⊂ ∆(S), τn →w∗ τ.

By (the extended real-valued version of) Baire’s theorem on semicontinuous functions,3

there exists a sequence of continuous functions { fk : S→ R}∞
k=1 such that fk ↓ f pointwise.

Then for each k, lim supn→∞
∫

f dτn ≤ lim supn→∞
∫

fkdτn by monotonicity of the integral.
Moreover, since each fk is continuous and S is compact, so is fk(S) ⊆ R for each k; it

follows that each fk is bounded. Then for each k, limn→∞
∫

fkdτn =
∫

fkdτ.
Finally, by Lebesgue’s monotone convergence theorem, limk→∞

∫
fkdτ =

∫
f dτ. Then

we have
lim sup

n→∞

∫
f dτn ≤ lim

k→∞
lim

n→∞

∫
fkdτn = lim

k→∞

∫
fkdτ =

∫
f dτ,

as desired.

Proposition 1 (Existence of Solutions). Suppose that v : S → R ∪ {−∞} is upper semicontin-
uous and S ⊆ ∆(Ω) is compact. Then arg maxτ∈∆(S){Eτv(p) s.t. Eτ p = p0} is nonempty.

Corollary 1. Suppose that v : ∆(Ω) → R ∪ {−∞} is upper semicontinuous and Ω is compact.
Then (1) has a solution.

As it turns out, Lemma 1 also makes it possible to extend Proposition 1 to the con-
strained information design problem considered by Doval and Skreta (2023):

max
τ∈∆(∆(Ω))

{Eτv(p) s.t. Eτ p = p0 and Eτ ḡk(p) ≥ 0, k = 1, . . . , K}. (2)

In fact, we can allow both the objective function v and the constraint functions ḡk to take
the value −∞.

Proposition 2. Suppose that v : ∆(Ω) → R ∪ {−∞} and {ḡk : ∆(Ω) → R ∪ {−∞}}K
k=1 are

each upper semicontinuous and that Ω is compact. Then (2) has a solution.

Proof. Since Ω is compact, so is ∆(Ω) (e.g., Aliprantis and Border (2006) Theorem 15.11).
By Lemma 1, for each k, the mapping τ 7→

∫
ḡkdτ is upper semicontinuous, and so {τ ∈

∆(Ω) :
∫

ḡkdτ ≥ 0} is closed. Then by Lemma 2, {τ | Eτ p = p0}∩
(⋂K

k=1{τ ∈ ∆(Ω) :
∫

ḡkdτ ≥ 0}
)

is closed, and hence compact (since ∆(Ω) is compact).
Then since the mapping τ 7→

∫
vdτ is upper semicontinuous by Lemma 1, it attains a

maximum on this set.

Proposition 1 allows us to extend several of the key results from Kamenica and Gentzkow
(2011) to the extended real-valued case. In particular, Proposition 3 shows that the value
of the problem is given by the value function’s concavification V(p) ≡ sup{z | (p, z) ∈
conv(hypo(v))} evaluated at the prior, and the support of the solution need not have more
elements than the set of states.

3See, e.g., Attouch (1984) Theorem 2.64.
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Proposition 3 (Solutions to Extended-Real Valued Persuasion Problems). Suppose that v :
S → R ∪ {−∞} is upper semicontinuous, S ⊆ ∆(Ω) is compact and convex, and dom(v) is a
convex Borel set. Then for all p0 ∈ ri(dom(v)),

i. V(p0) = maxτ∈∆(S){Eτv(p) s.t. Eτ p = p0}.

ii. If S ⊂ Rn, there exists τ∗ ∈ arg maxτ∈∆(S){Eτv(p) s.t. Eτ p = p0} such that supp τ∗ has
no more than dim(S) + 1 elements.

iii. If τ∗ ∈ arg maxτ∈∆(S){Eτv(p) s.t. Eτ p = p0}, then v(p) = V(p) for all p ∈ supp τ∗, and
V is affine and finite on conv(supp τ∗).

Note that in a persuasion problem where the set of states Ω is finite, part (ii) bounds
the number of posteriors in the support of the problem’s solution by |Ω|, since the simplex
∆(Ω) has dimension |Ω| − 1.

Corollary 2. Suppose that v : ∆(Ω) → R ∪ {−∞} is upper semicontinuous and |Ω| = N.
Then for all p0 ∈ ri(dom v), there exists τ∗ ∈ arg maxτ∈∆(Ω){Eτv(p) s.t. Eτ p = p0} such that
supp τ∗ has no more than N elements.

References

ALIPRANTIS, C. D. AND K. C. BORDER (2006): Infinite Dimensional Analysis: A Hitchhiker’s Guide,

Springer.

ATTOUCH, H. (1984): Variational convergence for functions and operators, vol. 1, Pitman Advanced

Publishing Program.

BLOEDEL, A. W. AND W. ZHONG (2021): “The Cost of Optimally-Acquired Information,” Working

paper.

DOVAL, L. AND V. SKRETA (2023): “Constrained information design,” Mathematics of Operations
Research.

GENTZKOW, M. AND E. KAMENICA (2014): “Costly Persuasion,” American Economic Review: Papers
and Proceedings, 104, 457–462.

HALAC, M., E. LIPNOWSKI, AND D. RAPPOPORT (2022): “Addressing strategic uncertainty with

incentives and information,” in AEA Papers and Proceedings, American Economic Association,

vol. 112, 431–437.

KAMENICA, E. (2019): “Bayesian Persuasion and Information Design,” Annual Review of Economics,

11, 249–272.

KAMENICA, E. AND M. GENTZKOW (2011): “Bayesian Persuasion,” American Economic Review, 101.

MORRIS, S. AND P. STRACK (2019): “The Wald Problem and the Equivalence of Sequential Sampling

and Ex-Ante Information Costs,” Available at SSRN 2991567.

4



POMATTO, L., P. STRACK, AND O. TAMUZ (2020): “The Cost of Information,” arXiv preprint
arXiv:1812.04211.

RUBIN, H. AND O. WESLER (1958): “A note on convexity in Euclidean -space,” Proceedings of the
American Mathematical Society, 9, 522–523.

WALD, A. (1945): “Sequential Tests of Statistical Hypotheses,” The Annals of Mathematical Statistics,

16, 117–186.

YODER, N. (2022): “Designing incentives for heterogeneous researchers,” Journal of Political Econ-
omy, 130, 2018–2054.

Proofs4

Lemma 2. If S ⊆ ∆(Ω) is compact, the set of Bayes-plausible distributions on S, {τ ∈ ∆(S) |
Eτ p = p0}, is a compact subspace of ∆(Ω) in the weak∗ topology.

Proof. Since S is compact, so is ∆(S) (e.g., Aliprantis and Border (2006) Theorem 15.11).
By Lemma 1, the mapping τ 7→

∫
pdτ(p) is both upper and lower semicontinuous, hence

continuous. It follows that the preimage of {p0} under this mapping, {τ | Eτ p = p0}, is
closed. Then {τ | Eτ p = p0} ∩ ∆(S) is compact.

Proof of Proposition 1 (Existence of Solutions) By Lemma 1, the mapping τ 7→
∫

vdτ is
upper semicontinuous on ∆(S), and so attains a maximum on any compact subspace of
∆(S) (e.g., Aliprantis and Border (2006) Theorem 2.43). The statement then follows from
Lemma 2. �

Proof of Corollary 1 Since Ω is compact, so is ∆(Ω) (e.g., Aliprantis and Border (2006)
Theorem 15.11); the statement follows from Proposition 1. �

Lemma 3 (Properties of the Concavification). Let S ⊆ Rn be convex and compact; let v : S →
R∪ {−∞} be upper semicontinuous with dom v 6= ∅; and let V be the concavification of v. Then
V is bounded above; dom V = conv(dom v); and ri(dom v) ⊆ ri(dom V).

Proof. Concavity of V follows immediately from the definition. Since v is upper semicon-
tinuous and S is compact, v is bounded above: for some z̄ ∈ R, we have v(p) ≤ z̄ for all
p ∈ S. Then {z|(p, z) ∈ conv(hypo(v))} is also bounded above: if (p, z) ∈ conv(hypo(v)),
then for some d, {pi}d

i=1 ⊆ S, and (λ1, . . . , λd) ∈ ∆({1, . . . , d}), z ≤ ∑d
i=1 λiv(pi) ≤ z̄. Then

V is bounded above: V(p) ≡ sup{z|(p, z) ∈ conv(Gr(v))} ≤ z̄ < ∞ for each p.
Then p ∈ dom V ⇔ V(p) > −∞. By definition, we have V(p) > −∞ if and only if

there exists (p, z) ∈ conv(hypo(v)) with z > −∞. This is true if and only if there exist

4For a set S, let cl(S) denote its closure, and let aff(S) denote its affine hull.
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d, {pi}d
i=1 ⊆ dom v, and {λi}d

i=1 ⊂ (0, 1] such that ∑d
i=1 λi = 1, ∑d

i=1 λiv(pi) > −∞, and

∑d
i=1 pi = p. Now for any {λi}d

i=1 ⊂ (0, 1], ∑d
i=1 λiv(pi) > −∞ if and only if {pi}d

i=1 ⊆
dom v; it follows that V(p) > −∞ ⇔ p ∈ conv(dom v). Hence dom V = conv(dom v).
Then the relative topologies of dom v and dom V coincide, since aff(dom V) = aff(conv(dom v)) =
aff(dom v); then since dom v ⊆ conv(dom v), ri(dom v) ⊆ ri(dom V).

Lemma 4. Suppose v : S → R ∪ {−∞} is upper semicontinuous, and S ⊆ ∆(Ω) is con-
vex and compact. Then v’s concavification V and concave closure V̄(p) ≡ max{z | (p, z) ∈
cl(conv(hypo(v)))} coincide on ri(dom v).

Proof. By Lemma 3, V is bounded above. Then it is continuous on ri(dom V) (e.g., Alipran-
tis and Border (2006) Theorem 5.43).

Then hypo(V) ∩ (ri(dom V) × R) = (Gr(V) ∪ conv(hypo(v))) ∩ (ri(dom V) × R) is
closed as a subset of (ri(dom V)×R).

Then if p0 ∈ ri(dom v) and (p0, z) is a limit point of conv(hypo(v)), we must have
(p0, z) ∈ Gr(V) ∪ conv(hypo(v)) and hence z ≤ V(p0). It follows from the definition of V̄
that V̄(p) = conv(p).

Lemma 5. The concave closure of v : S→ R∪ {−∞} coincides with its concave envelope: For all
p ∈ S, V̄(p) = ˆ̄V(p) ≡ inf{ f (p) | f ≥ v and f is affine and continuous}.

Proof. First, we show that inf{ f (p) | f ≥ v and f is affine and continuous} = inf{ f (p) |
f ≥ v and f is concave and u.s.c.}: By Aliprantis and Border (2006) Theorem 7.6,

inf{ f (p) | f ≥ v and f is concave and u.s.c.}
= inf{ f (p) | f is affine and continuous and f ≥ g ≥ v for some concave and u.s.c. g}
= ˆ̄V(p). (by choosing g = f )

Hence, since V̄ is concave and u.s.c. and V̄ ≥ v, we have V̄(p) ≥ ˆ̄V(p).
Now by definition, there exists a sequence {(pn, zn)}∞

n=1 ⊂ conv(hypo(v)) such that
(pn, zn) → (p, V̄(p)). Then for each n, zn ≤ ∑d

i=1 λiv(pi
n) for some {λi, pi

n}d
i=1 such that

∑d
i=1 λi = 1 and ∑d

i=1 λi pi
n = pn. Then for each n, we have ˆ̄V(pn) = inf{∑d

i=1 λi f (pi
n) | f ≥

v and f is affine and continuous} ≥ zn. Then since ˆ̄V is upper semicontinuous (it is the in-
fimum of a family of upper semicontinuous functions) we have ˆ̄V(p) ≥ lim supn→∞

ˆ̄V(pn) ≥
lim zn = V̄(p).

Proof of Proposition 3 (i): By Lemmas 4 and 5 and by monotonicity of the integral, for any
Bayes-plausible τ ∈ ∆(S),

V(p0) = ˆ̄V(p0) = inf{
∫

S
f (p)dτ(p) | f ≥ v and f is affine and continuous} ≥

∫
S

v(p)dτ(p).
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It follows that V(p0) ≥ supτ∈∆(S){Eτv(p) s.t. Eτ p = p0}.
Moreover, V(p0) ≤ supτ∈∆(S){Eτv(p) s.t. Eτ p = p0}: For any (p0, z) ∈ conv(hypo(v)),

there exist d ∈ N, {λi}d
i=1 ⊂ (0, 1], and {pi}d

i=1 such that ∑d
i=1 λi = 1, ∑d

i=1 λi pi = p0, and

∑d
i=1 λiv(pi) ≥ z. Then τ = ∑d

i=1 λiδpi is Bayes-plausible and Eτv(p) ≥ z. The inequality
then follows from the definition of V.

(ii): Since dom(v) is a Borel subset of S, so is its complement in S; it follows that for any
τ ∈ ∆(Ω), Eτv(p) =

∫
dom(v) v(p)dτ(p) +

∫
S\dom(v) v(p)dτ(p). Hence, if Eτv(p) > −∞, we

must have τ(S \ dom(v)) = 0, and the expectations of v and p are integrals over dom(v):
Eτ p =

∫
dom(v) pdτ(p) and Eτv(p) =

∫
dom(v) v(p)dτ(p). It follows that there is some τ̂ ∈

∆(∆(dom(v))) such that Eτ p = Eτ̂ p and Eτv(p) = Eτ̂v(p).
Since v is upper semicontinuous, it is Borel measurable; then so is h : dom(v) →

conv(hypo(v))) defined by h(p) = (p, v(p)). For any τ̂ ∈ ∆(∆(dom(v))), let τ̂h ∈ ∆(conv(hypo(v)))
be the pushforward measure of τ with respect to h (i.e., such that τ̂h(Y) = τ̂(h−1(Y))). Then
we have (p0, Eτ̂v(p)) =

∫
conv(hypo(v)) xdτ̂h(x).

Then by Rubin and Wesler (1958), for any τ ∈ ∆(S) with Eτ p = p0 and Eτv(p) > −∞,
(p0, Eτv(p)) ∈ conv(hypo(v)). Then by (i), (p0, V(p0)) ∈ conv(hypo(v)). The result then
follows from Carathéodorory’s Theorem.

(iii): By Lemma 3, p0 ∈ ri(dom v) ⊆ ri(dom V) and V is bounded above. Hence V is
proper concave, and thus superdifferentiable at p0 ∈ ri(dom V): There exists x ∈ Rn such
that V̄(p0) + x · (p − p0) ≥ V̄(p) ≥ v(p) for each p ∈ S. The rest follows identically to
the proof of Lemma 3 in Yoder (2022), relying on Proposition 3 (i) instead of Kamenica and
Gentzkow (2011).
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