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Abstract

We consider the problem of explaining models to a decision maker (DM) whose

payoff depends on a state of the world described by inputs and outputs. A true model

specifies the relationship between these inputs and outputs, but is not intelligible to

the DM. Instead, the true model must be explained via a simpler model. If the DM

maximizes their average payoff, then an explanation using ordinary least squares is

as good as understanding the true model itself. However, if the DM maximizes their

worst-case payoff, then any explanation is no better than no explanation at all. We

discuss how these results apply to policy evaluation and explainable AI.

JEL classification: C50, D81

Keywords: models, decision-making, model explanations, least squares

∗We thank Arjada Bardhi, Joel Flynn, Mira Frick, Paul Goldsmith-Pinkham, Kevin He, Ryota Iijima,

Annie Liang, Omer Tamuz, Akhil Vohra, Mark Whitmeyer, and conference participants at the Kansas Work-

shop in Economic Theory for very helpful comments. An extended abstract of this paper will appear in EC

’25: Proceedings of the 26th ACM Conference on Economics and Computation.
†Yale School of Management, Email: kaihao.yang@yale.edu
‡University of Georgia, John Munro Godfrey Sr. Department of Economics, Email: nathan.yoder@uga.edu
§Hoover Institution, Stanford University, Email: zentefis@stanford.edu



1 Introduction

People must often make decisions in environments that are too complicated for them to

understand. Policymakers evaluate social programs whose potential treatment effects are

heterogeneous, highly nonlinear, or have spillovers. Regulators design rules for complex

artificial intelligence models deployed in society without truly knowing how these models

work. How useful to decision makers can intelligible explanations of their environments be

instead?

In this paper, we study this question by considering the problem of a decision maker

(henceforth DM) who encounters a model that is too complicated to understand, and instead

must rely on an explanation of it. The DM’s payoff depends on their action and the state

of the world, where the latter is described by inputs and outputs. Inputs follow a known

distribution, and a single true model specifies the relationship between inputs and outputs.

For example, this true model could be the relevant data-generating process (DGP) that

occurs in nature or the DGP that results from a complex artificial system, such as a large

scale statistical or artificial intelligence (AI) model.

The key novel feature of our setting is that the space of true models is much larger than

the space of intelligible models that the DM can understand. For example, the space of true

models might contain all deep neural networks, but the space of intelligible models might

contain only nth degree polynomials. For the DM to incorporate information about the true

model into their choice of action, the true model must first be explained by mapping it to an

intelligible model.

We focus on mappings between the space of true models and the space of intelligible

models—what we call explainers—that have two consistency properties. First, if the true

model is already intelligible, the explainer should not explain it with a different model.

Second, the explainer should be linear, so that it preserves the structure of the space of

possible models. Together, these criteria amount to the explainer being a linear projection

of the true model onto the space of intelligible models. This class contains most tools used

in practice to explain models, including ordinary least squares (which we consider formally

in Section 3) and leading techniques for AI explainability (which we discuss in Section 2).

The paper’s setting captures many situations in which decision makers confront compli-

cated models that require an explanation. For instance, policymakers often evaluate social

programs whose treatment effects (the outputs) depend on the demographic characteristics

of the affected population (the inputs) through a complex relationship (the true model), and

the policymakers must choose which programs to implement (the action). Similarly, regu-

lators write rules on the deployment of complex AI models in society. Consider a state’s

transportation authority crafting safety standards for self-driving vehicles. Road, traffic, and

weather conditions (the inputs) enter a deep neural network (the true model) that directs
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the car’s speed and navigation (the outputs). The regulator must decide the areas of the

community, if any, the autonomous vehicles are allowed to operate (the action).

We consider two ways that the DM might evaluate their payoff. In the first, the DM

maximizes the expectation of their payoff over the distribution of possible inputs. In the

context of the program evaluation example, a policymaker behaving this way would care

about the average treatment effect of a program. In the second, the DM puts weight only on

the worst-case input. In the context of the self-driving cars, a regulator behaving this way

would care only about the self-driving car’s navigation (and the possibility of an accident)

under road conditions that would lead to the worst possible consequences.

The main results of the paper show that these two ways to evaluate payoffs have sharply

contrasting implications for the usefulness of model explanations as decision aids. If the DM

cares about the average payoff across inputs, we show that it is possible to give a robust

explanation that is always perfect, simply by explaining that model with the ordinary least

squares (OLS) method (Theorems 1 and 2).1 That is, the OLS explanation always allows the

DM to make a decision that is robustly better across all models that are consistent with the

explanation, and in fact perfect (in the sense that the DM is as well off as if they understood

the true model itself).

An important caveat to this result is that it applies to an OLS explanation that is calcu-

lated using the same distribution of inputs (and therefore outputs) that is used to calculate

the DM’s expected payoff, rather than a distribution that differs due to sampling error. In

other words, it applies to an OLS explainer that has access to the entire true model (as might

be the case if it is an AI model), but not necessarily an OLS estimator that only has access

to a sample from that true model (as might be the case if the model is a data-generating

process found in nature). Theorem 3 shows that this distinction is not benign: The robust

explanation offered by OLS is not robust to sampling error, even when that sampling error

is small. In particular, there is always a small sampling error such that OLS explanations

cannot allow the DM to robustly improve their payoff at all. This has important implications

for empirical work: Theorem 3 implies that OLS estimates can only be useful for decision

making when combined with assumptions about the form of the relationship being estimated

or about the way that sampling error occurs.

On the other hand, when the DM cares about their worst-case payoff, the prospects

for explanation are grim no matter which explainer is used. Specifically, any explanation

from any explainer is no better than having no explanation at all (Theorem 4). Intuitively,

any explainer projects the infinite-dimensional space of possible true models onto a finite-

dimensional space of explanations (i.e., the space of intelligible models). This limits the

1Here, an OLS-based explanation provides the coefficients from a linear regression of the outputs on the
inputs.
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information that can be recovered about the true model to a finite-dimensional sufficient

statistic. Since there are infinitely many inputs, this statistic is not useful to a DM who cares

about the worst-case input. In fact, this intuition for Theorem 4 extends to the intermediate

case of an ambiguity-averse DM in the sense of Gilboa and Schmeidler (1989): If the DM’s

set of priors has higher dimension than the set of intelligible models, Theorem 5 shows that

any explainer is unhelpful.

Outline The remainder of the paper proceeds as follows. Section 2 describes the paper’s

setting, and discusses its relationship to the literature on model evaluation (e.g., Fudenberg

and Liang 2020). Section 3 and Section 4 provide the main results, the former when the DM

cares about their average payoff, and the latter when they care about their worst-case payoff.

Section 5 provides a discussion of the paper’s findings. Section 6 describes the relationship

between our work and several strands of related literature. Section 7 concludes.

2 Setting

Inputs and Outputs A state of the world is (x, y) ∈ X × Y , where X ⊆ RK is a convex

set with dim(X) = K, and Y is RM . For any state of the world (x, y) ∈ X × Y , component

x ∈ X is interpreted as an input (or vector of exogenous variables) and component y ∈ Y

is interpreted as an output (or vector of endogenous variables). Inputs x ∈ X follow a

distribution µ0.

Actions and Payoffs A decision maker (henceforth DM) chooses an action a from a finite

set A = {a1, . . . , a|A|}. The DM’s payoff depends on the state of the world and the action

chosen. Let u : X × Y × A :→ R denote the DM’s payoff function. Throughout much

of our analysis, we consider DM payoffs that are separable, in the sense that u(x, y, a) =

w0(a) + x · w1(a) + y · w2(a) for some functions w0 : A→ R, w1 : A→ RK , w2 : A→ RM .

True Models A true model is a bounded Borel measurable function f : X → Y . Given

an input value x ∈ X, a true model f specifies the relationship between inputs and outputs

via y = f(x).

Let F ⊆ Y X be the set of possible true models. Note that a true model could be highly

complex: f , for instance, could be nonlinear, discontinuous, non-differentiable, a realization

of a multi-dimensional Brownian path, or defined by a deep neural network.

Example 1 (Treatment Effects). Consider a policymaker who chooses whether to implement

a treatment a ∈ {0, 1} in a population described by covariate vectors x ∈ X. Each output

y ∈ Y = RM = R2 describes the potential outcomes of the treatment, so that y0 ∈ R is the
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outcome without treatment and y1 is the outcome with treatment. The policymaker’s payoff

is

u(x, y, a) = ya = y · w(a) ,

where w(0) = (1, 0) and w(1) = (0, 1). The outcome ya under treatment a depends on the

covariates x through a true model f = (fa)a∈A.

Example 2 (Self-Driving Car Regulation). A regulator needs to set policies for self-driving

cars by choosing among finitely many rules a ∈ A (e.g., speed limits, number of approved

licenses, areas to allow for self-driving). Inputs X ⊆ RK denote all possible conditions

surrounding a vehicle (e.g., lane markings, weather, infrastructure, traffic, visibility). An

output is denoted by y ∈ Y ⊆ RM = R|A|, so that ya is the expected net benefit of self-driving

under rule a (taking into account potentially improved traffic efficiency and the possibility

of accidents). The regulator’s payoff is

u(x, y, a) = ya − c(a) = y · w2(a) ,

where w2(am) is a vector in R|A| whose m-th component equals 1 and all other components

equal zero, and c(a) is the fixed cost of implementing rule a. The expected net benefit

given rule a depends on condition x through a true model f , which is determined by the

autonomous vehicle’s algorithms, so that fa(x) = E[ya|x] is the expected net benefit when

the condition is x and the rule is a.

Intelligible Models To capture the idea that the true model might be highly complicated

and thus unintelligible to the DM, we consider a set Φ of intelligible models, where Φ ⊆ F

is a finite-dimensional linear subspace that contains the constant function that always takes

value of 1. Only models in Φ are intelligible to the DM, in the sense that the DM can only

distinguish two different models, ϕ1 and ϕ2, if these models both belong to Φ. For instance,

Φ could be the set of nth degree polynomials of x, which can be described by finitely many

coefficients.

Decision Problem Henceforth, we refer to a decision problem by a tuple (A, u,Φ), where

A is the (finite) set of available actions for the DM, u : X × Y × A→ R is the DM’s payoff,

and Φ is the set of intelligible models for the DM.

Explainers and Explanations For any decision problem (A, u,Φ), the true model f may

not be intelligible to the DM. However, it can be explained to the DM through an explainer.

Definition 1. An explainer for the decision problem (A, u,Φ) is a linear idempotent operator

Γ : F → F such that Γ(F ) = Φ.

4



An explainer Γ maps the true model f to an intelligible model Γ(f) ∈ Φ — an explanation

that helps the DM to understand the true model indirectly. We focus on explainers that

have two consistency properties (idempotency and linearity) possessed by most explainers

used in practice, such as ordinary least squares (which is used extensively in applications

like Example 1, and which we consider formally in Section 3) and leading techniques for AI

explainability (which we discuss later in this section). Idempotency ensures that explanation

is consistent with the truth whenever possible: if the true model f is intelligible, then it

should not be explained using a different model. Linearity, on the other hand, ensures that

explanation preserves the structure of the space of possible models. As we discuss below, in

settings where the true model is a conditional expectation function (as may be the case in,

e.g., Example 1), this amounts to consistency with the law of iterated expectations.

The explanation ϕ ∈ Φ that is provided by an explainer Γ may not be precisely the same

as the true model. But it does allow the DM to rule out all models that are not consistent

with ϕ, i.e., all models that are not in

Γ−1(ϕ) := {f ∈ F : Γ(f) = ϕ} .

Since the DM cannot discriminate between the models in this set, we focus on explanations

that are robustly useful to him across all of them: that is, they allow the DM to improve his

worst-case payoff across the models that are consistent with any given explanation.

The relationship between a true model f , an explainer Γ, and an explanation ϕ = Γ(f)

is summarized in Figure 1 below.

X Y

F

Φ
φ

f

Γ

Figure 1: Models, explainers, and explanations. The figure depicts (1) the space F
of possible true models f , which are functions from the space X of inputs to the space Y of
outputs; (2) the subspace Φ ⊂ F of intelligible models ϕ; and (3) an explainer Γ that maps
the space F of possible true models to the subspace Φ of intelligible models.
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Discussion

Our setting and central question are both tightly linked to the literature on the evaluation

of theoretical models (e.g., Fudenberg and Liang 2020; Montiel Olea, Ortoleva, Pai and Prat

2022; Fudenberg, Kleinberg, Liang and Mullainathan 2022; Andrews, Fudenberg, Liang and

Wu 2023; Fudenberg, Gao and Liang 2024). Like those papers, we consider methods for

simplifying a complex true relationship between inputs X and outputs Y using a map from

the former to the latter — what they call a prediction rule and we call an explanation. We

allow the method of simplification (the explainer) to vary, while they focus on mapping the

truth to a prediction rule using minimum distance — what we call the least squares explainer.

Instead, they vary the collection of maps from inputs to outputs that can be used to simplify

the truth, which they call a model.2 Our key departure is the following: In their settings,

prediction rules are approximations, and their purpose is to approximate the truth as well as

possible; in our setting, explanations are information, and their purpose is to be useful to a

decision maker.

Our setup is also related to that considered in statistical decision theory (e.g., Wald 1949;

Savage 1951). There, the statistician observes data from a sampling distribution that depends

on the state of the world. Our baseline analysis abstracts from sampling error, and focuses

on explanation instead: in our model, the DM observes an explanation from a deterministic

explainer that takes the true model as its argument. As suggested by Wald (1949), we

consider both average (Theorem 2) and worst case (Theorem 4) payoffs. However, a key

difference in our setting is that the average or worst case is not only among models (which

play the same role as “states” in statistical decision theory) but among their inputs (which

have no counterpart in statistical decision theory).

When payoffs are separable, it ensures that for a decision maker who cares about their

expected payoff — the case we consider in Theorems 1, 2, 3, and 5 — the only payoff-

relevant characteristic of the model is its expected output. We note that separability does

not necessarily require the map between inputs and outputs to be independent of the DM’s

action; this can be accomplished by letting each action correspond to part of the output

vector, as in Example 1 and Example 2. Instead, it requires that for any given action, inputs

and outputs enter payoffs independently.

As mentioned above, explainers used in practice are often linear. One especially relevant

example is the ordinary least squares explainer considered in Section 3. Another is LIME (Lo-

cal Interpretable Model-agnostic Explanations) (Ribeiro, Singh and Guestrin 2016), which

gives a local least-squares approximation to the true model.3 A third is SHAP (SHapley Ad-

2We use the word “model” differently, to mean both the true relationship between inputs and outputs
and an explanation.

3LIME also allows for penalizing the least-squares coefficient vector; it thus continues to satisfy property
2 (law of iterated expectations) when the penalty is the norm of the least-squares coefficient vector, as in
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ditive exPlanations) (Lundberg and Lee 2017) which computes a linear approximation to the

true model whose coefficients (on the coordinates xi of the input vector) are a weighted aver-

age of the differences between the model’s expected output conditional on xS and conditional

on xS∪{i}, for each S ⊆ K \ {i}.4

While we represent models as deterministic functions from inputs to outputs, our frame-

work can also accommodate settings where the output is stochastic. One way to do this is

to let one dimension xK of the space of inputs represent a randomization device with dis-

tribution µ0(·|x−K). Alternatively, when only the average output E[y|x] is relevant to the

DM’s payoff at any given input x — i.e., when u(x, y, a) is affine in y — we can simply inter-

pret each possible true model as a conditional expectation function f(x) = E[y|x]. Doing so

provides an additional motivation for linearity: Then, linearity amounts to the consistency

of explanations with the law of iterated expectations. That is, if a model is generated by

randomizing between g and h — say, by using a state-independent randomization device

ε = {g, h} with P[ε = g] = λ — the explanation of that model should be the expected

explanation of g = E[y|·, ε = g] and h = E[y|·, ε = h]:

Γ(λg + (1− λ)h) = Γ(λE[y | ·, ε = g] + (1− λ)E[y | ·, ε = h]) = λΓ(g) + (1− λ)Γ(h).

Or, put differently, the explainer Γ should not be affected by extra randomization devices

that are not part of the state space X × Y .

3 When are Explanations Robustly Useful?

We first explore a simple benchmark in which explaining a model to a DM has tremendous

value. Specifically, we suppose that the DM cares about the expectation of his payoff under

the distribution of inputs µ0. This corresponds to situations in which decision makers are

utilitarians and care only about the average performance of their actions. For example,

policymakers may care only about the average treatment effect of an intervention; regulators

or businesses may only care about the average performance of AI models they regulate or

incorporate into their products. In what follows, we explore how explaining models can help

the DM make better decisions when the DM only cares about the average.

In particular, suppose the true model is f . Then such a decision maker obtains the

expected payoff

U(f, a) := Ex∼µ0 [u(x, f(x), a)]

when he takes action a. If he understood the true model, and chose the action that maximized

ridge regression, though not property 1 (consistency).
4As Lundberg and Lee (2017) show, this is equivalent to LIME with a quadratic loss function, a kernel

based on the Shapley value, and no complexity penalty.
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this payoff, he would receive an expected payoff of

U(f) := max
a∈A

U(f, a) .

By definition, U(f) is the highest payoff that the DM can achieve, given that the true

model is f . Consequently, the performance of an explainer Γ in a given decision problem

(A, u,Φ) can be evaluated by considering the gap between the benchmark full-information

payoff U(f) and the DM’s payoff U(f, a(Γ(f))) when he takes an action a(Γ(f)) informed by

the explanation Γ(f).

But how should he choose such an action? Given any model f ∈ F and any explainer

Γ, there are many models that are consistent with the explanation ϕ = Γ(f). The DM is

not able to identify which model f̂ ∈ Γ−1(ϕ) is the true model given the explanation ϕ.

Nonetheless, our first result shows that with the ordinary least squares explainer, this lack

of identification is payoff-irrelevant for any DM who only cares about the average outcomes.

Definition 2. For any distribution µ ∈ ∆(X), the ordinary least squares (OLS) explainer

for µ is the unique orthogonal projection Γµ from F onto Φ. That is, for each f ∈ F , Γµ(f)

is the unique element of Φ such that ⟨ϕ, f − Γ(f)⟩µ = 0 for all ϕ ∈ Φ, where ⟨·, ·⟩µ denotes

the usual inner product in L2(µ)M .5 When µ is the true distribution of inputs µ0, we denote

this explainer Γ := Γµ0 and refer to it as the OLS explainer.

Theorem 1 shows that the OLS explainer perfectly identifies the payoff-relevant charac-

teristics of the true model.

Theorem 1. Suppose that (A, u,Φ) is a decision problem with separable payoffs. Then from

the perspective of a utilitarian decision-maker, all models that are consistent with the same

OLS explanation are payoff-equivalent. That is, for any action a ∈ A, and any models

f, f̂ ∈ F with Γ(f) = Γ(f̂),

U(f̂ , a) = U(f, a) .

Theorem 1 shows that when the model is explained using the OLS explainer Γ, even

though there are many models that might be consistent with an explanation, and the DM

cannot identify which one is the true model, the DM’s expected payoff when he takes a

given action is the same across all these models. As a result, explaining models using the

OLS explainer is always enough for the DM to identify all they need to make a decision.

5Specifically, given µ ∈ ∆(X), for any f, g ∈ F , define the inner product

⟨f, g⟩µ := Ex∼µ

 M∑
j=1

fj(x)gj(x)

 .
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For intuition, recall that when payoffs are separable, an expected utility maximizer only

cares about the model’s expected output. OLS preserves that expectation because it is the

orthogonal projection with respect to the inner product that uses the DM’s prior µ0.

A straightforward consequence of Theorem 1 is that OLS gives a robust explanation that

is always perfect : it always (for any possible true model) gives an explanation that allows

the DM to make a decision that is robustly (across all models that are consistent with the

explanation) better, and in fact perfect (in the sense that the DM could do no better by

knowing the true model).

Corollary 1 (Always Perfect Robust Explanations). Suppose that (A, u,Φ) is a decision

problem with separable payoffs. Then for any true model f , the explanation ϕ = Γ(f) robustly

explains f :

inf
g∈Γ−1

(ϕ)

U(g, a) = U(f, a). (1)

In particular, the decision-maker can do no better than if she knew the true model:

max
a∈A

inf
g∈Γ−1

(ϕ)

U(g, a) = U(f).

In fact, a utilitarian DM need not be sophisticated enough to compute the worst case

described in (1) in order to get the full value of robust explanation from OLS. Instead, they

can achieve their first-best value U(f) by näıvely choosing an action as if the explanation

ϕ = Γ(f) was the true model.

Theorem 2 (OLS is All You Need). For any decision problem (A, u,Φ) with separable payoffs,

and for any true model f ∈ F , a utilitarian DM’s first-best value can be achieved by treating

the explanation as the true model under the ordinary least squares explainer Γ. That is,

for each explanation ϕ ∈ Φ, let a∗(ϕ) ∈ argmaxa∈A U(ϕ, a). Then for all ϕ ∈ Φ and all

f ∈ Γ
−1
(ϕ),

U(f, a∗(ϕ)) = U(f) .

Theorem 2 shows that even a DM that takes the explanation as literally true can achieve

exactly the first-best benchmark via the ordinary-least square explainer. In other words, even

when the set of intelligible models is very limited, explaining any complex model through

OLS allows the DM to get the same payoff they would get if they understood the true model.

We note that Theorems 1 and 2 both rely on the assumption of separable payoffs. That

is, for any given action, inputs and outputs must enter the DM’s payoff independently. While

this assumption is appropriate in some settings (e.g., Examples 1 and 2), it is strong, and

without it, Theorems 1 and 2 both fail. As it turns out, this foreshadows our results in the
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rest of the paper, which show that while explanation can be robustly useful (Theorems 1 and

2), that usefulness is fragile in several different ways.

Sampling Error

Theorems 1 and 2 suggest that explaining models using least squares can be very useful

for a utilitarian decision maker who is concerned with their average payoff over all inputs x.

This, however, relies on the fact that the distribution used to construct the OLS explainer

is precisely the distribution µ0 that is relevant for the DM’s expected payoff. But in the

real world, OLS is often used as an estimator rather than an explainer : that is, rather than

computing the least-squares approximation under the population distribution µ0, practition-

ers compute it under a sampling distribution µ over the space of exogenous variables (i.e.,

model inputs). This may be due to lack of data (e.g., when f maps demographic variables to

treatment effects, as in Example 1) or to economize on computational resources (e.g., when

f is an AI model, as in Example 2).

Theorem 3 shows that the robust explanation offered by the OLS explainer is not robust

to even small differences in these distributions — i.e., to even small sampling error.

Theorem 3 (Robust Explanations Are Not Robust to Model Uncertainty). Suppose that

F contains all bounded Borel measurable functions f : X → Y , and that (A, u,Φ) is a

decision problem with separable payoffs and a product set of intelligible models. The robust

usefulness of least squares explanations is not robust to even small sampling error: For any

open M ⊆ ∆(X) with µ0 ∈ M, there exists µ ∈ M such that for any action a and explanation

ϕ ∈ Φ,

inf
f∈Γ−1

µ (ϕ)

U(f, a) = inf
f∈F

U(f, a).

In particular, the decision-maker can do no better than näıvely maximizing her expected payoff

over all outputs:

max
a∈A

inf
f∈Γ−1

µ (ϕ)

U(f, a) = max
a∈A

inf
f∈F

U(f, a) = max
a∈A

inf
y∈Y

Ex∼µ0 [u(x, y, a)]

Intuitively, the robust usefulness of the OLS explanation ϕ = Γ(f) relies on every possible

true model f̂ in its preimage Γ
−1
(ϕ) producing the same expected output Ex∼µ0 [f̂(x)]. Or, put

differently, it relies on every element of the OLS explainer’s kernel ker Γ := {g ∈ F |Γ(g) = 0}
having an expected output of zero. In the appendix, Proposition 2 shows that there are

distributions µ arbitrarily close to µ0 such that for any action a, the kernel of the OLS

estimator Γµ contains elements gw2(a) such that gw2(a) ·w2(a) has nonzero expectation. Since

ker Γµ is a subspace of F , it must also contain elements such that Ex∼µ0 [g(x)] · w2(a) — and

hence U(ϕ+ g, a) — is arbitrarily small.
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4 When are Explanations Not Robustly Useful?

When the space of intelligible models is rich enough (but still finite dimensional), Corol-

lary 1 shows that explanation with ordinary least squares robustly (i.e., across all models

consistent with the explanation) achieves expected payoffs indistinguishable from those ob-

tained with complete knowledge of the true model. In fact, Theorem 2 shows that treating

the OLS explanation as if it were the true model yields the same expected payoff U(f) as

having direct knowledge of the true model itself.

But models must often be explained to agents who want to make a decision that is

robust across inputs, not just across models. Policymakers may want to ensure that an

intervention has beneficial effects to all members of a population, not just on average (i.e.,

if the policymakers have a Rawlsian social welfare function). Likewise, regulators or firms

may be most concerned about the most catastrophic effects that could result from adopting

an AI model, not just the model’s average performance.

To understand how explanations could benefit such a decision maker, suppose that he

observes an explanation ϕ from an explainer Γ. Then for each action a ∈ A, the worst case

payoff that is consistent with that explanation is

R(ϕ, a|Γ) := inf
f∈Γ−1(ϕ)

x∈X

u(x, f(x), a) .

In contrast, in the absence of an explanation, the DM’s worst-case payoff from taking action

a is

R(a) := inf
f∈F
x∈X

u(x, f(x), a) .

If such a DM benefits from receiving an explanation, it must be because it causes him to

change his action; that is, because there is some pair of actions a, a′ such that R(a′) ≥ R(a)

but R(ϕ, a|Γ) > R(ϕ, a′|Γ). Unfortunately, in stark contrast to Theorem 2, Theorem 4 reveals

that this is impossible: when the space of possible true models is rich enough, explanation

cannot change the worst-case payoff from any action. Thus, explaining the true model is

never helpful for making decisions that are robust across both models and inputs. In fact,

this result extends beyond decision problems with separable payoffs: All that is needed is

that payoffs from any given action depend on one dimension of output, i.e., we can write

u(x, y, a) = v(x, y · w(a), a) for some w : A→ Y and v : X × Y × A→ R.

Theorem 4 (Worst-Case Model Outcomes are Inexplicable). Suppose that F contains all

bounded Borel measurable functions f : X → Y , and that (A, u,Φ) is a decision problem

with payoffs that depend on one dimension of output for any given action. No explainer can

provide an explanation whose usefulness is robust across both inputs and models: For any
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action a, any explainer Γ, and any ϕ ∈ Φ,

R(ϕ, a|Γ) = R(a).

In particular, the decision-maker can do no better than naively maximizing her worst case

payoff over all states of the world:

max
a∈A

R(ϕ, a|Γ) = max
a∈A

R(a) = max
a∈A

inf
y∈Y
x∈X

u(x, y, a). (2)

Intuitively, the space of possible explanations is finite-dimensional, but the space of pos-

sible models is infinite-dimensional. The only way that a linear explainer can map from

the latter to the former is by discarding information about all but finitely many of those

dimensions (i.e., the true model’s output values at all but finitely many input values).

In particular, suppose the DM observes an explanation ϕ∗. Proposition 1 below shows

that for every possible value z of the dimension of output y ·w(a) on which her payoff from a

depends, and almost every possible input x, there is some model f with f(x) ·w(a) = z that

is consistent with that explanation. Since the DM’s payoff is continuous and the space of

inputs is convex, this is enough to ensure that the explanation does not change the infimum

in (2).

Proposition 1. Suppose that F contains all bounded Borel measurable functions f : X → Y .

Let Γ be an explainer; let ϕ∗ ∈ Φ be an explanation; let w ∈ Y \ {0} be a vector; let z ∈ R.

For all but finitely many x ∈ X, there exists f ∈ Γ−1(ϕ∗) such that f(x) · w = z.

Note that the impossibility result of Theorem 4 does not reverse as the dimension of

Φ increases. In other words, no matter how many models are intelligible, any explanation

from any explainer provides no information that is useful in making decisions that are robust

across both inputs and models. For instance, if Φ is the set of nth degree polynomials, then

no matter how large n is, no explainer improves the payoff of a DM who cares about the

worst case, because the worst-case payoff consistent with an explanation is approximately

the same, no matter the explanation.

Together, Theorem 4 and Proposition 1 reveal that explanations of complicated models

offer no assistance to a DM who wants to maximize her worst-case payoff, no matter how

rich the set of (finite-dimensional) intelligible models is, and even without an assumption of

separable payoffs. When the model is explained using OLS, even if the set of possible true

models that are consistent with a given explanation is infinite-dimensional, they are all the

same on average. Hence, if the DM cares about the expected payoff, an OLS explanation is

just as good as understanding the true model. But when the DM cares about their worst

case payoff, the average model output is irrelevant. Rather, the set of payoffs that these

12



Figure 2: True models consistent with the same explanation. Proposition 1 shows
that given an explainer Γ, at all but finitely many values x of the input and any explanation
ϕ∗, one can take any value z of a dimension of the output w · y and find a model that is
consistent with ϕ∗ such that w ·f(x) = z. Figure 2 illustrates an example where X = [0, 1], Γ
is the OLS explainer Γ, and µ0 is uniform: At x+, the models f1, f2, and f3 give very different
values of w · y. But each is consistent with the explanation ϕ∗: Γ(f1) = Γ(f2) = Γ(f3) = ϕ∗.

models give the DM at the worst-case inputs determines the performance of an explainer. As

Theorem 4 shows, the finite-dimensional nature of the set of intelligible models makes this

set unaffected by an explanation.

To illustrate the implications of Theorem 4 and Proposition 1, we can revisit the treatment

effect example of Example 1, but now with a Rawlsian DM concerned with the worst possible

treatment effects. Suppose once more that the DM can understand explanations of the data

generating process as an nth degree polynomial, but that any true model outside that class is

unintelligible. Reporting the coefficients from a linear regression—which is standard practice

in the treatment effects literature—is then intelligible to the DM, but will never alter their

decisions. In fact, there is no explainer that can help the DM make a program evaluation

when they care about those in the population who would be most disadvantaged by the

policy.
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Ambiguity Aversion

In Section 3, we considered the case of an expected utility maximizer who knows the

distribution of inputs µ0. What if the DM was instead ambiguity-averse in the sense of

Gilboa and Schmeidler (1989), had a set of priors over inputs, and maximized the worst

expected payoff over that set? Or, what if the DM does not know the true distribution of

inputs µ0 exactly, and wants to make a decision that is robust across models and also robust

across a set of possible distributions M?

Formally, suppose that an ambiguity averter observes an explanation from an explainer

Γ. Then the worst-case payoff from action a ∈ A that is consistent with his set of priors M
and the explanation ϕ he observes is given by

RM(ϕ, a|Γ) := inf
f∈Γ−1(ϕ)

µ∈M

Ex∼µ[u(x, f(x), a)] ,

while without an explanation, his worst-case payoff is

RM(a) := inf
f∈F
µ∈M

Ex∼µ[u(x, f(x), a)] .

Ambiguity aversion is a natural intermediate case between expected utility maximiza-

tion (where Theorem 2 shows that an OLS explanation allows the DM to achieve the full-

information payoff) and worst-case analysis (where Theorem 4 shows that explanation cannot

improve the DM’s payoff). Hence, we might expect the efficacy of explanation to be inter-

mediate between those two cases as well. Unfortunately, it is not: Theorem 5 shows that

when the set of possible distributions is higher-dimensional than the space Φ of intelligible

models, robust explanation is impossible—even when, as in Section 3, the DM has separable

payoffs, and thus cares only about the model’s expected inputs and outputs.

Theorem 5 (Impossibility of Robust Explanation with Ambiguity Aversion). Suppose that

F contains all bounded Borel measurable functions f : X → Y , and that (A, u,Φ) is a

decision problem with separable payoffs. If an ambiguity averse DM has a set of priors with

sufficiently high dimension, robustly useful explanation is impossible: For any action a, any

explainer Γ, any convex M ⊆ ∆(X) with dim(M) > dim(Φ), and any ϕ ∈ Φ,

RM(ϕ, a|Γ) = RM(a).

In particular, the decision-maker can do no better than naively maximizing her worst case
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payoff over all outputs:

max
a∈A

RM(ϕ, a|Γ) = max
a∈A

RM(a) = max
a∈A

inf
y∈Y
µ∈M

Ex∼µ[u(x, y, a)]. (3)

Theorem 5 shows that explanations of the true model are not robustly helpful to an

ambiguity averse DM. Intuitively, just like in Theorem 4, the set of features of the true

model over which the DM takes the worst case, {Ex∼µ[f(x)]}µ∈M, has higher dimension than

the space of intelligible models. Thus, any explanation can only provide information about

a lower-dimensional manifold in {Ex∼µ[f(x)]}µ∈M, and must provide no information about

that manifold’s complement—which is dense in {Ex∼µ[f(x)]}µ∈M.

Theorem 5 also provides a pessimistic perspective on Theorem 2 that complements that

of Theorem 3. Each result shows, in slightly different ways, that Theorem 2 relies on the

distribution of inputs used to compute the DM’s payoff exactly matching the distribution of

inputs used to compute the model’s OLS explanation. To show that robust explanation is

not robust to sampling error, Theorem 3 perturbs the former; to show that it is not robust

to ambiguity about the distribution of inputs, Theorem 5 perturbs the latter.

5 Discussion

5.1 The Effectiveness of Explanations

Theorem 2 and Theorem 4 present a fundamental dichotomy between the two regimes

when explaining complicated models. When a decision maker cares about her average payoff

across inputs, it is possible to offer an explanation that is robustly first-best across models

using the canonical OLS approach. But no explainer can offer a useful explanation that is

robust across both models and inputs (Theorem 4) or even across both models and distribu-

tions of inputs (Theorem 5). Moreover, the robust explanation offered by OLS is not robust

to sampling error (Theorem 3).

In the context of policymaking, Theorem 2 suggests that standard regression analyses are

useful and powerful tools for summarizing and approximating the relationship between inputs

and outputs for a utilitarian policymaker who cares about the average outcome. However,

Theorem 4 suggests that when the policymaker wants to make a decision that is robust across

all inputs, it is impossible for any regression analyses to provide useful guidance, unless some

possible true models are ruled out a priori. As a result, any attempt at explaining the

complicated data generating processes that occur in nature is then futile, as there are no

explainers that can improve—even slightly—the policymaker’s decisions.

Likewise, in the context of AI regulation, explaining a black-box AI model to a regu-

lator could be extremely helpful to a regulator who wishes to improve average outcomes.
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Nonetheless, it is impossible to enable better decisions about worst-case scenarios by ex-

plaining black-box AI models.

Together, our results suggest that the effectiveness of model explanations depends cru-

cially on how the decision maker to whom the model is explained evaluates their payoff. In

particular, in environments where the decision maker is concerned about the worst-case sce-

nario, the availability of explanations of the true model—however sophisticated they are—do

not alleviate those concerns.

5.2 The Value of Theory in Explanations

Our results that rule out the possibility of robust explanation (Theorems 4 and 5) each rely

on a richness condition on the space of possible models: F contains all bounded measurable

functions from the space of inputs to the space of outputs. Or, put differently, no well-behaved

function can be ruled out as a possible true model.

But if some of these models can be ruled out as inconsistent with theory, then Theorems 4

and 5 do not apply, and it may be possible to offer a useful explanation that is robust across

both models and inputs. For instance, if theory predicts that the effect of a treatment must

be nondecreasing in a demographic variable, it may be possible to explain the true model in

a way that is useful for a policymaker, even when that policymaker is Rawlsian and cares

about the effect on those most disadvantaged by the treatment he chooses.

Thus, the message of our results is more nuanced than it might appear: it is not that

explanations to a decision maker who cares about the worst case are never robustly useful,

but that theory is necessary for such explanations to be robustly useful.

5.3 The Robustness of Reduced Form Estimation

Many empirical analyses aim to be as agnostic as possible about the way that the variables

that they study are related. Instead of making “structural” assumptions about the functional

form of that relationship, they provide a “reduced form” estimate of a linear approximation to

it. For instance, if they wish to estimate the effect of a treatment à la Example 1, they might

not make assumptions about the way that the treatment effect might depend on individual

characteristics (i.e., limitations on the space of true models F , or a prior over F ) and instead

focus on estimating an average treatment effect (i.e., the expectation Ex∼µ0 [f(x)]). Similarly,

they might appeal to the central limit theorem to avoid making assumptions about the

distribution of sampling error.

Our results give a sharp characterization of the usefulness of this approach to decision

makers who rely on the results of such analyses. When there is no sampling error, and decision

makers only care about the relationship between exogenous and endogenous variables on

average, Theorem 2 shows that structural assumptions are unnecessary. But when sampling
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error is present, Theorem 3 shows that this is no longer true: Least-squares estimates can only

be useful for decision making when combined with assumptions about the model’s functional

form and/or the form of the sampling error. Likewise, when a decision maker is interested in

a worst-case rather than average treatment effect, Theorem 4 shows that even in the absence

of sampling error, least squares estimates are only useful when combined with structural

assumptions.

We emphasize that this characterization does not apply to nonparametric estimation:

While parametric estimators like OLS project the true model onto a finite-dimensional space

of models Φ that can be easily interpreted, nonparametric estimators such as kernel density

sacrifice interpretability by projecting the true model onto an infinite-dimensional space.

Since the difference between the dimensionality of F and Φ is key to Theorems 3-5, such

estimates can be useful for any DM even in the absence of structural assumptions: For

instance, in the absence of sampling error, the kernel density estimate of the true model f is

just f .

5.4 Recommendations vs. Explanations

Explanations are not robustly useful in the contexts considered by Theorems 4 and 5

because the space of intelligible models is finite-dimensional, but the space of true models is

infinite-dimensional. However, the DM only cares about the model insofar as it helps them

choose an action, and the set of actions is finite. This suggests a remedy to the negative

results of Theorems 4 and 5: Instead of offering explanations (i.e., intelligible models that

represent the true model), offer recommendations (i.e., inform the DM of the optimal action

under the true model). That is, instead of using an explainer Γ : F → Φ, one should use a

recommender defined by6

G : F → A

f 7→ argmax
a∈A

inf
x∈X

u(x, f(x), a)

Clearly, a recommender always makes the DM as well off as if he understood the true model.

Moreover, unlike an explainer, a recommender places no cognitive demands on the DM.

Instead of considering all possible true models that could produce an explanation, and eval-

uating the worst-case payoff for each action, the DM can simply follow the recommended

6Or in the ambiguity-averse case,

GM : F → A

f 7→ argmax
a∈A

inf
µ∈M

Ex∼µ[u(x, f(x), a)].
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action.

However, a recommendation can only be successful if the decision maker’s payoff can be

incorporated into the recommender’s design. If the same information about the true model

must be used by many decision makers with heterogeneous preferences or even one decision

maker with private information, a recommender may not deliver the full-information payoff,

because it may not always be optimal for the decision maker(s) to follow the recommendation.

Indeed, there is ample empirical evidence of people overriding model recommendations to

make high-stakes decisions in several sectors of society like criminal justice, medicine, and

finance (De-Arteaga, Fogliato and Chouldechova 2020; Jussupow, Benbasat and Heinzl 2020;

Ludwig and Mullainathan 2021; Angelova, Dobbie and Yang 2023).7

6 Related Literature

Our paper sits adjacent to a large recent literature that considers the use of (potentially

misspecified) models in decision making. Like us, these papers also consider environments

where agents may be constrained in their ability to understand a payoff-relevant mapping.

This may take the form of, for instance, a mapping from actions to outputs (e.g., Esponda

and Pouzo 2016; Fudenberg, Lanzani and Strack 2021); a mapping from states to signal

distributions (e.g., Schwartzstein and Sunderam 2021); or a mapping from states and past

actions to signal distributions (e.g., Bohren and Hauser 2024). Of these, our paper is closest to

the strand of the literature focusing on the evaluation of theoretical models (e.g., Fudenberg

and Liang 2020, Montiel Olea et al. 2022), in which the relevant mapping is between inputs

and (distributions over) outputs; see the Discussion in Section 2 for a detailed comparison of

our settings and research questions.

As we note in Example 1, our paper also has implications for policy evaluation that

connect to the literature on the optimal design of RCTs in a potential-outcomes setting (e.g.,

Banerjee, Chassang and Snowberg 2017; Chassang, Padró i Miquel and Snowberg 2012;

Kasy et al. 2013; Banerjee, Chassang, Montero and Snowberg 2020; Chassang and Kapon

2022). Our focus is complementary to that taken by these papers: Rather than focusing on

distributing measurement error across different dimensions of output (i.e., different potential

outcomes), we focus on the consequences of the decision maker’s inability to comprehend the

true relationship between individual characteristics (inputs) and treatment effects.

Finally, there is a large literature in computer science on the use of explanations to help

humans use predictions made by AI models to make decisions (e.g., Lai and Tan 2019; Bansal,

Wu, Zhou, Fok, Nushi, Kamar, Ribeiro and Weld 2021). This focus is subtly different than

ours: While we also consider the explanation of AI models that map inputs (e.g., features) to

7Iakovlev and Liang (2023) theoretically compare and contrast the important issue of choosing between
human evaluators who use context to make predictions and algorithms that do not.
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outputs (e.g., labels), in our setting the model is directly relevant to the DM’s payoff, rather

than providing suggestions that inform the DM about another data generating process. The

explanations in our paper thus provide information about the underlying payoff-relevant

relationship directly, instead of indirectly (by providing information about an approximating

model).8

7 Conclusion

We consider the problem of explaining models to a decision maker (DM). The DM has a

payoff that depends on their actions and the state of the world, where the latter is described

by inputs and outputs. A true model specifies the relation between these inputs and outputs,

but is not intelligible to the DM. For the DM to make a choice, the true model instead has

to be explained using an intelligible model that belongs to a finite dimensional space. We

show that if the DM maximizes their average payoff across inputs, then an explanation using

ordinary least squares is arbitrarily close to as good as understanding the true model itself.

However, if the DM maximizes their worst-case payoff across inputs, then any explanation

offers no advantage over no explanation at all.

The paper’s environment leaves room for continuing work. For example, we focus on a

single decision maker, but a second agent could be introduced, one who provides explanations

of models that may misalign with the interests of the decision maker.9 Alternatively, one could

consider a case “in between” utilitarianism and ambiguity aversion à la the ϵ-contamination

model of Huber (1964). One could also consider the prospects for explanation when the DM

is utilitarian, but payoffs are not separable. More generally, it remains to be seen whether

there are reasonable assumptions on the space of models, payoffs, or sampling error — besides

those explored in Theorems 1 and 2 — that allow an explainer to sidestep the implications

of Theorems 3, 4, and 5.
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Proofs

Proof of Theorem 1 Suppose that Γ(f) = Γ(f̂). Since Γ is the orthogonal projection onto

Φ, and since the constant function 1 is contained in Φ,

⟨1, f − Γ(f)⟩ = ⟨1, f̂ − Γ(f̂)⟩ = 0 .

Hence,

Ex∼µ0 [f̂(x)] = ⟨1, f̂⟩ = ⟨1,Γ(f̂)⟩ = ⟨1,Γ(f)⟩ = ⟨1, f⟩ = Ex∼µ0 [f(x)] ,
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and thus

U(f̂ , a) = Ex∼µ0 [u(x, f̂(x), a)] =w0(a) + Ex∼µ0 [x] · w1(a) + Ex∼µ0 [f̂(x)] · w2(a)

=w0(a) + Ex∼µ0 [x] · w1(a) + Ex∼µ0 [f(x)] · w2(a)

=Ex∼µ0 [u(x, f(x), a)] = U(f, a) ,

as desired. ■

Proof of Theorem 2 (OLS Is All You Need) Suppose ϕ ∈ Φ and f ∈ Γ
−1
(ϕ). Since Γ is

idempotent, Γ(ϕ) = ϕ = Γ(f). Then by Theorem 1, for each a ∈ A, U(ϕ, a) = U(f, a). Then

U(f, a∗(ϕ)) = U(ϕ, a∗(ϕ)) = max
a∈A

U(ϕ, a) = max
a∈A

U(f, a) = U(a),

as desired. ■

Lemma 1. Let {gi : X → Y }Ni=1 be linearly independent. There exist {xi}Ni=1 ⊂ X such that

the matrix GN({xi}Ni=1) =

g1(x1) · · · gN(x1)
...

. . .
...

g1(xN) · · · gN(xN)

 has full rank.

Proof. We proceed by induction on N .

Initial step: N = 1. By assumption, g1 ̸= 0. Then there exists x1 such that g1(x1) ̸= 0,

as desired.

Induction step: N > 1. Suppose that the statement holds for N − 1, and let {xi}N−1
i=1 be

such that GN−1({xi}N−1
i=1 ) has full rank. Suppose toward a contradiction that for all xN ∈ X,

GN({xi}Ni=1) does not have full rank. Then for any xN ∈ X, there exist {zi(xN)}N−1
i=1 such

that gN(x1)...

gN(xN)

 =
N−1∑
i=1

zi(xN)

gi(x1)...

gi(xN)

 .
Then since GN−1({xi}N−1

i=1 ) has full rank, we must have z1(xN)
...

zN−1(xN)

 = [GN−1({xi}N−1
i=1 )]−1

 gN(x1)
...

gN(xN−1)

 =:

 ẑ1
...

ẑN−1

 .
Then for all xN ∈ X, gN(xN) =

∑N−1
i=1 ẑigi(xN). Then {gi}Ni=1 are linearly dependent, a

contradiction. ■
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Proposition 2. Suppose that F contains all bounded Borel measurable functions f : X → Y ,

that Φ = Φ̂M for a subspace Φ̂ of L2(µ0), and that suppµ0 = X. For any (weak-∗) open set

M ⊆ ∆(X) containing µ0, there exists µ ∈ M such that for all ϕ∗ ∈ Φ, w ∈ Y \ {0}, and
z ∈ R, there exists f ∈ Γ

−1

µ (ϕ∗) such that w · Ex∼µ0 [f(x)] = z.

Proof. Let {ϕj}dim(Φ̂)
j=1 be an orthonormal (in L2(µ0)) basis for Φ̂; without loss let ϕ1 = 1X .

By Lemma 1, we can choose {xi}dim(Φ̂)
i=1 ⊂ X such that

Ψ =


ϕ1(x1) · · · ϕdim(Φ̂)(x1)

...
. . .

...

ϕ1(xdim(Φ̂)) · · · ϕdim(Φ̂)(xdim(Φ̂)))


has full rank. Then since M is open in the weak-∗ topology, there exists λ ∈ (0, 1) such that

µ := λµ0 + (1− λ)
∑dim(Φ̂)

i=1
1

dim(Φ̂)
δxi

∈ M.

Now fix w ∈ Y \ {0}, and define gw ∈ F by

gwm(x) = wm

1−
dim(Φ̂)∑
i=1

Ψ−1
1i

1

µ0({xi}) + 1−λ

λdim(Φ̂)

1{xi}

 for each m ∈ {1, . . . ,M}.

For each j ∈ {1, . . . , dim(Φ̂)}, gm is orthogonal to ϕj in L
2(µ): For j = 1, we have

∫
X

gmϕ1dµ =

∫
X

gmdµ = wm

λ−
dim(Φ̂)∑
i=1

Ψ−1
1i

1

µ0({xi}) + 1−λ

λdim(Φ̂)

(
λµ0({xi}) + (1− λ)

1

dim(Φ̂)

)
= wmλ

(
1−Ψ−1

1· 1
)

= wmλ
(
1−Ψ−1

1·

[
ϕ1(x1) ϕ1(x2) · · · ϕ1(xdim(Φ̂))

]⊺)
= wmλ

(
1−Ψ−1

1· Ψ·1
)
= wmλ(1− 1) = 0.

For j ̸= 1, since {ϕj}dim(Φ̂)
j=1 are orthonormal in L2(µ0),

∫
X
ϕjdµ0 =

∫
X
ϕjϕ1dµ0 = 0. Then we

have

∫
X

gmϕjdµ = wm

λ∫
X

ϕjdµ0 −
dim(Φ̂)∑
i=1

Ψ−1
1i

1

µ0({xi}) + 1−λ

λdim(Φ̂)

(
λµ0({xi}) + (1− λ)

1

dim(Φ̂)

)
ϕj(xi)


= −wmλ(Ψ

−1
1· Ψ·j) = 0.

Then since {ϕj}dim(Φ̂)
j=1 is a basis for Φ̂, for each m ∈ {1, . . . ,M}, gm is orthogonal to ψ in

L2(µ) for each ψ ∈ Φ̂. Then since Φ = Φ̂M , g is orthogonal to ϕ in L2(µ)M for each ϕ ∈ Φ.

Consequently, we must have Γµ(g) = 0.
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Moreover, w · Ex∼µ0 [g] ̸= 0: We have

w ·
∫
X

gdµ0 = w · w

(
1−

dimΦ∑
i=1

Ψ−1
1i

1

µ0({xi}) + 1−λ
λdim(Φ)

µ0({xi})

)

= ||w||2
(
1−Ψ−1

1· 1+
1− λ

λdim(Φ)
Ψ−1

1· 1

)
= ||w||2

(
1−Ψ−1

1· Ψ·1 +
1− λ

λdim(Φ)
Ψ−1

1· Ψ·1

)
= ||w||2

(
1− 1 +

1− λ

λdim(Φ)

)
> 0.

Now let f = ϕ∗ +
z−w·Ex∼µ0 [ϕ

∗(x)]

w·Ex∼µ0 [g]
g. Since Γµ is linear and idempotent,

Γµ(f) = Γµ(ϕ
∗) +

z − w · Ex∼µ0 [ϕ
∗(x)]

w · Ex∼µ0 [g]
Γµ(g) = Γµ(ϕ

∗) = ϕ∗.

So f ∈ Γ
−1

µ (ϕ∗). Moreover, we have

w · Ex∼µ0 [f(x)] = w · Ex∼µ0 [ϕ
∗(x)] +

z − w · Ex∼µ0 [ϕ
∗(x)]

w · Ex∼µ0 [g]
w · Ex∼µ0 [g] = z,

as desired. ■

Proof of Theorem 3 (Least-Squares Estimates Are Not Robust To Sampling Er-

ror) Let µ ∈ M be the distribution whose existence is guaranteed by Proposition 2. By

definition,

inf
f∈Γ−1

µ

U(f, a) ≥ inf
f∈F

U(f, a) ≥ inf
y∈Y

Ex∼µ0 [u(x, y, a)] (4)

⇒ max
a∈A

inf
f∈Γ−1

µ

U(f, a) ≥ max
a∈A

inf
f∈F

U(f, a) ≥ max
a∈A

inf
y∈Y

Ex∼µ0 [u(x, y, a)]. (5)

Since payoffs are separable, we have U(f, a) = w0(a) + Ex∼µ0 [x] ·w1(a) + Ex∼µ0 [f(x)] ·w2(a).

Then by Proposition 2, for any ϕ∗ ∈ Φ, {U(f, a)|f ∈ Γ
−1

µ (ϕ∗)} = R, and so each of the

quantities in (4) and (5) take the value −∞. The claim follows.

Lemma 2. Suppose that F contains all bounded Borel measurable functions f : X → Y , and

hence F = Bb(X)M . Let Γ be an explainer; let ϕ∗ ∈ Φ be a explanation; let w ∈ Y \ {0} be a

vector; let z ∈ R. The set of priors

Mz,w,ϕ∗ := {µ ∈ ∆(X) | Ex∼µ[f(x)] · w ̸= z∀f ∈ Γ−1(ϕ∗)} (6)

has finite dimension no greater than dim(Φ).

Proof. Since Bb(X) is complete in the sup-norm, so is Bb(X)M with the norm ||f || =
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supx∈X ||f(x)||. For each µ ∈ ∆(X), define the linear functional eµ,w by eµ,w(f) = Ex∼µ[f(x)]·
w; eµ,w is continuous, since |Ex∼µ[f(x)] · w| ≤ supx∈X |f(x) · w| ≤ ||w|| · ||f ||. Choose a basis

B of Γ(F ) = Φ. Suppose toward a contradiction that there is a finite linearly independent

set M ⊆ My,w,ϕ∗ with |M| > dim(Φ).10 We first prove three claims.

Claim L2.1: Φ + ker(Γ) = F . By definition, Φ + ker(Γ) ⊆ F . Since B is a basis for

Φ, for every f ∈ F , there exist {cϕ}ϕ∈B ⊂ R such that Γ(f) =
∑

ϕ∈B cϕϕ. Then since Γ is

idempotent, Γ(
∑

ϕ∈B cϕϕ) =
∑

ϕ∈B cϕΓ(ϕ) =
∑

ϕ∈B cϕϕ = Γ(f). Then f−
∑

ϕ∈B cϕϕ ∈ ker(Γ),

and hence f ∈ Φ + ker(Γ).

Claim L2.2: For any µ ∈ Mz,w,ϕ∗, ker(Γ) ⊆ ker(eµ,w): Suppose not. Then there exists

g ∈ ker(Γ) such that Ex∼µ[g(x)] ·w ̸= 0. Then for any h ∈ Γ−1(ϕ∗), f = h+ (z−Ex∼µ[h(x)]·w)

Ex∼µ[g(x)]·w g ∈
Γ−1(ϕ∗). Then Ex∼µ[f(x)] · w = z, a contradiction.

Claim L2.3: For each each µ ∈ M, there exists gµ ∈ F such that Ex∼µ[g
µ(x)] ·w = 1

but Ex∼µ′ [gµ(x)] ·w = 0 for each µ′ ∈ M\{µ}. Let e−µ,w =
⊕

µ′∈M\{µ} eµ′,w ∈ B(F,R|M|−1)

be the direct sum of the expectation functionals eµ′,w for the priors in M other than µ. Let

e∗−µ,w : R|M|−1 → F ∗ = B(F,R) be the adjoint of e−µ,w defined by e∗−µ,w(z) = z · e−µ,w. Note

that {g : X → R : g = w · f for some f ∈ F} = Bb(X); since M is linearly independent,

and Bb(X) contains the set of simple functions, {eµ′,w}µ′∈M must be linearly independent as

well. Consequently, eµ,w /∈ e∗−µ,w(R
|M|−1).

Since it is a subspace of the finite-dimensional space R|M|−1, e−µ,w(F ) is closed. Then by

Kantorovich and Akilov (1964) Theorem 3∗ (2.XII), e∗−µ,w(R
|M|−1) = ⊥ ker(e−µ,w) = {A ∈

F ∗|A(f) = 0∀f ∈ ker(e−µ,w)}. It follows that there exists g ∈ ker(e−µ,w) =
⋂

µ′∈M\{µ} ker(eµ′,w)

such that eµ,w(g) ̸= 0; the claim follows by letting gµ = 1
Ex∼µ[g(x)]·wg.

We now construct a function for each m ∈ RM that is in Φ, and which returns the µth

entry of m when ew,µ is applied to it.

For any m ∈ RM, let fm(x) =
∑

µ∈Mmµg
µ(x), where gµ are as defined in Claim L2.3.

Since F is a vector space, we must have fm ∈ F . Then by Claim L2.1, fm = ϕm + hm where

ϕm ∈ Φ and hm ∈ ker(Γ), and hence by Claim L2.2, hm ∈ ker(eµ,w) for each µ ∈ M. Then

for each µ ∈ M, we have mµ = eµ,w(f
m) = eµ,w(ϕ

m) + eµ,w(h
m) = eµ,w(ϕ

m).

Now for each ϕ ∈ B, let zϕ ∈ RM be the vector whose µth entry is zϕµ = eµ,w(ϕ).

Claim L2.4: For each m ∈ RM, m ∈ span{zϕ}ϕ∈B. Given m ∈ RM, we can write

ϕm =
∑

ϕ∈B λ
m
ϕ ϕ for some {λmϕ }ϕ∈Φ ⊆ R. Then for each µ ∈ M, mµ = Ex∼µ[ϕ

m(x)] · w =∑
ϕ∈B λ

m
ϕ Ex∼µ[ϕ(x)] · w, and hence mµ =

∑
ϕ∈B λ

m
ϕ z

ϕ
µ. It follows that m =

∑
ϕ∈B λ

m
ϕ z

ϕ, and

hence m ∈ span{zϕ}ϕ∈B.

We now complete the proof. Since B is a basis for Φ, it has no more than dim(Φ) elements;

10Assuming that M is finite is without loss, since if |M| = ∞, we can always take a finite subset.
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it follows from Claim L2.4 that dim(RM) = |B| ≤ dim(Φ) < |M|, a contradiction. ■

Proof of Proposition 1 Follows immediately from Lemma 2 by identifying each x ∈ X

with the degenerate distribution δx with δx({x}) = 1. ■

Proof of Theorem 4 (Worst-Case Model Outcomes are Inexplicable) Fix ϕ ∈ Γ(F ),

and for each w ∈ Y and z ∈ R, let Xz,w,ϕ ≡ {x ∈ X | f(x) · w ̸= z∀f ∈ Γ−1(ϕ)}. By

Proposition 1, each Xz,w,ϕ is finite. Since X is convex, it has no isolated points, so it

follows that for each z, X \ Xz,w,ϕ is dense in X. Then since u is continuous, for each

w ∈ Y , z ∈ R, and a ∈ A, u(X, y, a) ⊆ cl(u(X \ Xz,w,ϕ, y, a)). Hence infx∈X u(x, y, a) ≥
infx∈X\Xz,w,ϕ

u(x, y, a), and since X \Xz,w,ϕ ⊆ X, we have

inf
x∈X

u(x, y, a) = inf
x∈X\Xz,w,ϕ

u(x, y, a).

Since u depends on one dimension of output for any given action, we have u(x, y, a) =

v(x,w(a) · y, a). Then by definition of Xz,w,ϕ, for each y ∈ Y and a ∈ A,

{u(x, y, a) | x ∈ X \Xw(a)·y,w(a),ϕ} = {v(x, y · w(a), a) | f ∈ Γ−1(ϕ), x ∈ X \Xw(a)·y,w(a),ϕ}

=

{
v(x, f(x) · w(a), a)

∣∣∣∣∣ f ∈ Γ−1(ϕ),

x ∈ X \Xz,w(a),ϕ, f(x) · w(a) = y · w(a)

}
⊆ {u(x, f(x), a) | f ∈ Γ−1(ϕ), x ∈ X}.

It follows that for each y ∈ Y and a ∈ A,

inf
x∈X

u(x, y, a) = inf
x∈X\Xz,w(a),ϕ

u(x, y, a) ≥ inf
x∈X

f∈Γ−1(ϕ)

u(x, f(x), a).

Taking infima over y yields R(a) = infx∈X,y∈Y u(x, y, a) ≥ infx∈X,f∈Γ−1(ϕ) u(x, f(x), a) =

R(ϕ, a|Γ). Then since Γ−1(ϕ) ⊆ F and {u(x, f(x), a) | f ∈ F} ⊆ {u(x, y, a) | y ∈ Y }, we
have

inf
x∈X

f∈Γ−1(ϕ)

u(x, f(x), a) ≥ inf
x∈X
f∈F

u(x, f(x), a) ≥ inf
x∈X
y∈Y

u(x, y, a) ≥ inf
x∈X

f∈Γ−1(ϕ)

u(x, f(x), a),

and so all the quantities must be equal. Hence R(a) = R(ϕ, a|Γ) = infx∈X
y∈Y

u(x, y, a), as

desired. (2) follows by taking maxima over A. ■

Proof of Theorem 5 (Futility of Explanation with Ambiguity Aversion) Fix ϕ ∈
Γ(F ), and for each z ∈ R and w ∈ Y , let Mz,w,ϕ be as in (6). By Lemma 2, for each z ∈ R

and w ∈ Y , dim(Mz,w,ϕ) ≤ dim(Φ) < dim(M).
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Claim T5.1. For each z ∈ R and w ∈ Y , M\Mz,w,ϕ is dense in M (in the weak∗-

topology). Since dim(aff(Mz,w,ϕ)) = dim(Mz,w,ϕ) < dim(M), M\aff(Mz,w,ϕ) is nonempty.

Given µ ∈ Mz,w,ϕ, choose µ
′ ∈ M\ aff(Mz,w,ϕ). Then for each n, µn = 1

n
µ′ + (1− 1

n
)µ ∈ M

(since M is convex) but µn /∈ aff(Mz,w,ϕ) (since if it was, then because µ ∈ aff(Mz,w,ϕ), we

would have to have µ′ = nµn − (n− 1)µ ∈ aff(Mz,w,ϕ))). Since µn →w∗ µ, µ is a limit point

of M\Mz,w,ϕ; the claim follows.

Since u is continuous, for each w, y ∈ Y , z ∈ R, and a ∈ A, it follows from Claim

T5.1 that {Ex∼µ[u(x, y, a)] | µ ∈ M} ⊆ cl({Ex∼µ[u(x, y, a)] | µ ∈ M \ Mz,w,ϕ}). Hence

infµ∈M Ex∼µ[u(x, y, a)] ≥ infµ∈M\Mz,w,ϕ
Ex∼µ[u(x, y, a)], and since µ ∈ M \Mz,w,ϕ ⊆ M, we

have

inf
µ∈M

Ex∼µ[u(x, y, a)] = inf
µ∈M\Mz,w,ϕ

Ex∼µ[u(x, y, a)].

Since u is separable, we have u(x, y, a) = w0(a)+w1(a) · x+w2(a) · y. Then by definition

of Mz,w,ϕ, for each y ∈ Y and a ∈ A,

{Ex∼µ[u(x, y, a)] | µ ∈ M \Mw2(a)·y,w2(a),ϕ}

= {w0(a) + w1(a) · Ex∼µ[x] + w2(a) · y | f ∈ Γ−1(ϕ), µ ∈ M \Mw2(a)·y,w2(a),ϕ}

=

{
w0(a) + w1(a) · Ex∼µ[x] + w2(a) · Ex∼µ[f(x)]

∣∣∣∣∣ µ ∈ M \Mw2(a)·y,w2(a),ϕ,

f ∈ Γ−1(ϕ),Ex∼µ[f(x)] = y

}
⊆ {Ex∼µ[u(x, f(x), a)] | f ∈ Γ−1(ϕ), µ ∈ M}.

It follows that for each y ∈ Y and a ∈ A,

inf
µ∈M

Ex∼µ[u(x, y, a)] = inf
µ∈M\Mw2(a)·y,w2(a),ϕ

Ex∼µ[u(x, y, a)] ≥ inf
µ∈M

f∈Γ−1(ϕ)

Ex∼µ[u(x, f(x), a)].

Taking infima over y yields infµ∈M,y∈Y Ex∼µ[u(x, y, a)] ≥ infµ∈M,f∈Γ−1(ϕ) Ex∼µ[u(x, f(x), a)].

Moreover, we have

{Ex∼µ[u(x, f(x), a)] | µ ∈ M, f ∈ F} = {Ex∼µ[w0(a) + w1(a) · x+ w2(a) · f(x)] | µ ∈ M, f ∈ F}

= {w0(a) + w1(a) · Ex∼µ[x] + w2(a) · Ex∼µ[f(x)] | µ ∈ M, f ∈ F}

⊆ {w0(a) + w1(a) · Ex∼µ[x] + w2(a) · y | µ ∈ M, y ∈ Y }

= {Ex∼µ[u(x, f(x), a)] | µ ∈ M, y ∈ Y }

Then we have (since Γ−1(ϕ) ⊆ F )

inf
µ∈M

f∈Γ−1(ϕ)

Ex∼µ[u(x, f(x), a)] ≥ inf
µ∈M
f∈F

Ex∼µ[u(x, f(x), a)] ≥ inf
µ∈M
y∈Y

Ex∼µ[u(x, y, a)] ≥ inf
µ∈M

f∈Γ−1(ϕ)

Ex∼µ[u(x, f(x), a)],
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and so all the quantities must be equal. Then taking maxima over A yields RM(ϕ|Γ) =

RM = maxa∈A infµ∈M
y∈Y

Ex∼µ [u(x, y, a)] , as desired. ■
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