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Abstract

A principal wants information to help her decide whether to approve a

project. She delegates costly experimentation to an agent, who wants her to

approve the project and has private information about the state. The princi-

pal can influence experimentation only by restricting the experiments that the

agent can undertake: she cannot commit to approval, and no transfers are pos-

sible. For example, the FDA may select a set of clinical trials that are acceptable

for testing a new drug, but cannot pay drug companies or weaken its thresh-

old for approval. We show the principal can screen the agent — and thus learn

his private information — by offering a menu of experiments that differ in con-

ditional expected payoffs across states. Doing so is always optimal: screening

dominates pooling. Private information distorts the optimal menu by making

the false negative rate inefficiently high. In our drug approval application, too

many good drugs are rejected.
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1 Introduction

Individuals and organizations often delegate the acquisition of information to
help them make decisions. Drug regulators delegate the conduct of clinical trials
to pharmaceutical companies;1 central banks delegate some components of stress
testing to independent banks; and judicial systems delegate the investigation of
defendants to police and prosecutors in criminal trials. Frequently, the agents that
they delegate to have private information about the things they are asked to in-
vestigate, and care about the decisions that result from their investigations. For in-
stance, pharmaceutical firms are better informed about the quality of their proto-
type drugs than the Food and Drug Administration (FDA), and want those drugs
to be approved; retail banks are better informed than the Federal Reserve about
their resilience to financial shocks, and want to pass stress tests.

This delegation problem is the primary concern of this paper. Unlike classic del-
egation problems, such as Holmström (1977) and Alonso and Matouschek (2008),
where the principal delegates a decision to a privately informed agent, we con-
sider settings where the principal retains decision making power but delegates the
choice of an experiment to the agent. For instance, the FDA does not allow pharma-
ceutical companies to make an approval decision for a new drug, but instead re-
quires them to conduct a clinical trial that must follow certain guidelines. This pa-
per asks whether and how an agent can be induced to reveal his private informa-
tion about the state by restricting the set of experiments that the principal will ac-
cept (e.g. through clinical trial guidance, rules for financial stress tests, or setting
discovery rules in criminal trials). We show that they can, and moreover, that get-
ting them to reveal their information (rather than letting it remain private) is al-

1The Food and Drug Administration (FDA) requires drug manufacturers to perform a wide
variety of tests of quality prior to approving a new drug. First, drug manufacturers must test a
proposed new compound on a variety of animal species to test if the compound is toxic. Then,
drug companies submit an Investigational New Drug (IND) request, which includes information
on the drug’s compound. In the IND request, drug manufacturers outlay an experimentation plan
going forward. They specify how they will test the drug on human subjects. Experimentation on
human subjects proceeds in 4 stages. The first 3 of these stages (small scale tests measuring safety,
medium scale tests measuring effectiveness, and large scale tests measuring interactions with other
drugs) are lab-trials. Stage 4 involves the drug company periodically monitoring the drug after it
goes to market. Throughout the procedure, the FDA’s Center for Drug Evaluation and Research
(CDER) carefully reviews the drug company’s data and determines if the drug’s anticipated benefit
outweighs the risk. If so, the FDA approves the drug.
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ways optimal.
We work in a model with two states of the world: a low state and a high state. A

principal will decide whether to approve or reject a project, preferring to approve
when the state is high. An agent prefers that the principal approves the project.
The agent receives a private, noisy signal about the state. In order to persuade
the principal to approve the project, the agent can conduct an experiment. Ex-
periments produce hard information2 and are costly, with constant marginal cost.3

Consequently, experiments that fully reveal the state are prohibitively costly, and
so are never chosen by the agent. The principal can restrict the agent to experi-
ments from a menu designed by the principal. However, the agent cannot be com-
pelled to experiment; they always have the option to not communicate.4

In settings like ours where transfers are not available, delegating experiments
can benefit the principal relative to delegating the decision directly as in Holm-
ström (1977) and Alonso and Matouschek (2008). For instance, in our setting, if
the principal delegated the approval decision to the agent, the agent would always
opt to approve the project. More generally, in any setting where an agent’s payoffs
from approval are independent of his type, a principal cannot induce the agent to
reveal any private information merely by delegating the decision. However, since
the agent’s payoff from conducting a given experiment depends on his type, del-
egating experimentation can induce the agent to reveal his private information at
the same time as he gathers additional information that is relevant to the approval
decision.

The menu offered by the principal can either be screening, where each type se-
lects a distinct experiment, or pooling, where some types select the same exper-
iment. In canonical mechanism design settings, any pooling menu can be con-
verted into an equivalent screening menu by simply ”adding replicas” of objects
in the menu.5 However, in our setting, knowing the agent’s type that conducts a
particular experiment changes the distribution of posteriors it induces. Thus, be-
cause the principal cannot commit to approving the project, pooling menus can-
not be converted into equivalent screening menus and must be treated separately.
Choosing a screening menu instead of a pooling menu benefits the principal di-

2That is, the results of experimentation are verifiable and credible to any interested party.
3In the sense of Pomatto et al. (2023).
4That is, they can choose to ”veto” a particular delegation set (Kartik et al., 2021).
5This is a consequence of the revelation principle.
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rectly, because it allows her to learn the agent’s private information. But there is
an important trade-off: for some types, the agent’s participation constraint is more
difficult to satisfy in screening menus than in pooling menus. Theorem 1 shows
that the benefit from learning the agent’s private information outweighs the cost
of a stricter participation constraint. Consequently, the optimal menu must be a
screening menu. In the drug regulation setting, for instance, a regulator can pro-
duce better approval decisions by offering drug developers a menu of clinical trial
protocols to choose from, rather than specifying a single protocol.

We show that it is possible to characterize implementable screening menus in
a manner that is reminiscent of standard characterizations in the contracting and
the literature on mechanism design with transfers,6 despite the fact that the princi-
pal does not have access to transfers (Proposition 1). Importantly, implementable
screening menus satisfy a monotonicity condition which allows us to intuitively
describe the principal’s screening procedure: the principal constructs a menu of
experiments that differ in state-conditional expected payoffs for the agent. In any
implementable screening menu, the difference between agent’s expected payoff
when the state is high and his expected payoff when the state is low is increasing
in his type report. Since the agent’s private information is precisely his belief re-
garding the state, the agent’s payoff from increasing or decreasing approval prob-
abilities in each state depends on his type. These values can vary separately, just
like qualities and transfers in Mussa and Rosen (1978).

We next turn our attention to characterizing the principal’s optimal screening
menu. The principal’s problem is one of constrained information design; we lever-
age the duality results of Doval and Skreta (2023) to show that it is the unique max-
imizer of a Lagrangian. This allows us to show that each of the experiments in-
duced by the principal are binary and — just as in screening problems with trans-
fers — maximize the difference of a surplus term and an information rent term.

However, because these terms contain Lagrange multipliers whose values are
not pinned down, existing results characterizing distortion from asymmetric in-
formation (e.g., Maskin and Riley (1984), or Yoder (2022) when the choice is an ex-
periment) do not immediately carry over to our setting. Moreover, since transfers
are absent, distortion is not away from a single efficient experiment, but an entire
Pareto frontier. We thus compare experiments from the optimal menu to Pareto-

6e.g., Myerson (1981), Mussa and Rosen (1978), Maskin and Riley (1984).
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improving efficient experiments. We first arrive at the standard result from transfer-
able utility contracting that there is no distortion at the top: the highest type’s exper-
iment is efficient, since their experiment does not appear in the local downward
binding incentive constraints for any other type (Proposition 4). However, there is
also distortion everywhere else: no other type conducts an efficient experiment (The-
orem 3), and in particular, the principal may find it optimal to inefficiently exclude
some types by inducing them to conduct a totally uninformative experiment.

This distortion does not necessarily take the form of a less informative experi-
ment.7 In particular, the false positive rate of an experiment induced by the prin-
cipal may be higher or lower than that of an efficient experiment that Pareto im-
proves upon it. But for types (other than the highest) that are not excluded by the
principal, Theorem 3 shows that distortion always results in an inefficiently high
false negative rate. In fact, the same is true relative to the take-it-or-leave-it offer
that the principal would make to the agent if she knew his type (which is generally
not a Pareto improvement): The experiment that the principal induces with asym-
metric information has a higher false negative rate (Proposition 5). Hence, relative
to either benchmark, the principal approves good projects (i.e., those for which the
state is high) too infrequently.

Related Literature

Within the literature on information design (e.g., Kamenica and Gentzkow (2011)),
other authors (e.g., Hedlund (2017); Kosenko (2023)) have explored the conse-
quences of private information for the sender. Our paper innovates by allowing al-
lowing another party (the principal) to constrain the researcher’s experimentation
decision. Essentially, we consider a screening problem, whereas previous contri-
butions to this literature have focused on signaling problems.

Our paper belongs to a large body of work on delegation following Holm-
ström (1977). Unlike many papers in this literature, the choice being delegated
in our model has much higher dimension than the space of agent types. As we
show, this gives the principal a greater ability to utilize the agent’s private informa-
tion: Alonso and Matouschek (2008) show that when delegating a one-dimensional
choice, the principal can only choose a subset of types to force into a corner solu-
tion, while leaving the rest effectively unconstrained. But in our model, the princi-

7Unlike in Yoder (2022).
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pal can fully screen the agent’s private information (and in fact, we show doing so
is always optimal) even without access to transfers. This feature is reminiscent of
Koessler and Martimort (2012), who describe optimal delegation in settings where
delegation sets are subsets of R2. They find that the spread between the decisions
can allow the designer to screen the agent’s private information. Analogous to
spread in Koessler and Martimort (2012), we show that in our model, the designer
can use the difference in the agent’s expected utility conditional on the state being
high and the agent’s expected utility conditional on the state being low to screen
the agent’s private information.

Especially relevant to our paper is a recent literature on the delegation of dy-
namic experimentation. Guo (2016) studies a one-armed bandit model where an
agent has private information about the risky arm’s payoff, and the principal can
limit the agent’s freedom to allocate resources between arms (in the form of a
history-dependent policy). Closer to our paper is McClellan (2022), who also con-
siders a setting where an agent experiments to influence the approval decision of a
principal. The key differences relative to our paper are that (a) the principal incen-
tivizes the agent by committing to an approval rule, rather than limiting the exper-
iments that the agent can conduct, and (b) because experimentation is dynamic á
la Wald (1947), the principal faces additional incentive constraints.8

We also follow a large recent literature on contracting for flexible information
acquisition. Rappoport and Somma (2017), Whitmeyer and Zhang (2022), and
Sharma et al. (2024) each consider models where the principal does not possess
private information, and so the contracting problem is one of moral hazard. They
focus on the impact of risk aversion and limited liability constraints on the opti-
mal payment scheme, as well as whether that scheme can be implemented by con-

8The Wald (1947) setup is closely related to flexible information acquisition with likelihood ratio
costs; see Morris and Strack (2019). But because the principal only observes the ex post realization
of the agent’s experiment in McClellan (2022), he cannot fully restrict the design of the agent’s
experiment (or infer his private information from it) the way he can in our model. Conversely,
because the principal cannot commit to an approval threshold in our model, he cannot use it as an
instrument to screen the agent the way he can in McClellan (2022).

An earlier version (McClellan, 2017) considers the case of two-sided commitment where the agent
can commit to an experimentation policy, and so the principal only faces a static incentive con-
straint. When the principal’s inability to commit to an approval rule is not binding, our results also
characterize the optimal mechanism in this setting: As Morris and Strack (2019) show, the cost of
attaining a distribution of posteriors with Wald (1947) experimentation is just its LLR cost. Thus,
a menu of static-threshold stopping mechanisms in McClellan’s (2017) setting (as he shows is opti-
mal with two-sided commitment) is equivalent to a menu of binary Blackwell experiments in ours.
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tracting on the experiment’s result and/or the realized state, rather than on the ex-
perimental protocol itself. Closer to this paper are Yoder (2022) and Wang (2023),
who (like us) consider settings where the agent has private information, but (un-
like us) where that private information concerns the agent’s cost of experimenta-
tion. Relative to this literature, our paper has three novel features: (i) transfers are
unavailable to the principal; (ii) the principal’s decision is payoff-relevant to the
agent; and (iii) the agent has private information about the state of the world itself.

This article is also related to work on the design of approval rules in statistical
decision theory. Tetenov (2016) studies how a regulator can design a statistical test
when agents have private information about the state. In his setting, the principal
chooses a single experiment which all agents conduct, and commits to approval
when the experiment produces a positive result. In contrast, our model highlights
the usefulness of a menu of experiments to screen the agent. Jagadeesan and Vi-
viano (2024) study the design of publication rules (i.e., should unsurprising results
be published?) when agents decide how to experiment. In their setting, researchers
do not possess ex-ante9 private information, but can manipulate their findings.

2 Model

There is a binary state of the world ω ∈ {0, 1}. An agent (he) with private but
imperfect information about ω can publicly conduct a costly experiment about the
state. A principal (she) can choose the set of experiments available to the agent.
Before the agent observes his private information, both he and the principal place
prior probability β0 on the event ω = 1.

The Principal After observing the experiment conducted by the agent and its
result, the principal must decide whether to approve a project (such as a new drug
application) whose value to her depends on the state of the world. She wants to
approve the project in one state (without loss, ω = 1) but not the other. Approving
the project gives the principal a payoff of w1 > 0 when ω = 1 and w0 < 0 when
ω = 0, while disapproval yields a payoff of zero.10 Hence, when her belief is

9That is, they are not more informed about the state prior to choosing an experiment.
10Since the principal cannot make transfers to the agent, letting her disapproval payoff be con-

stant at zero is without loss.
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P(ω = 1) = β, she chooses to approve the project if and only if11

βw1 + (1 − β)w0 ≥ 0 ⇔ β ≥ −w0

w1 − w0
=: b.

We call b the principal’s threshold belief, and assume that β0 < b < 1: she is willing
to approve if and only if she receives information that is sufficiently suggestive of
state 1. Hence, when her belief is β, her interim expected payoff is given by

W(β) ≡
{

0, β < b;
w0 + (w1 − w0)β, β ≥ b.

Throughout, we assume that the principal cannot commit to an alternative deci-
sion rule in an attempt to incentivize the agent to reveal more information.

The Agent The agent privately observes a signal about ω that causes him to up-
date his belief to θ ∈ Θ := {θ0, . . . , θN}, where for each 1 ≤ n ≤ N, θn > θn−1. We
refer to the interim belief θ as the agent’s type, and describe its distribution with
the probability mass function σ; by Bayes’ rule, ∑N

n=1 σ(θn)θn = β0. We assume
that θN < b, so that no type would be able to convince the principal to approve the
project with only his private signal.

The agent is motivated to conduct costly experiments by his desire to persuade
the principal to approve the project. He has transparent motives, in the sense that
his payoffs are state-independent: He receives a payoff of u > 0 if the project is
approved, and zero otherwise. If the principal’s posterior belief is β after observing
the agent’s experiment and its result, the agent’s gross payoff12 is U(β), where

U(β) ≡
{

0, β < b;
u, β ≥ b.

Experimentation The agent conducts a Blackwell experiment of the form (S, π :
Ω → ∆(S)), where S is a set of signal realizations.13 We typically abuse notation
and refer to this experiment as π when the set S is clear from context. Let Π de-

11To avoid existence issues, we assume that the principal approves the project when her belief is
equal to the threshold b.

12Before considering the cost of the experiment.
13Naturally, S must be a Polish set.
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note the set of Blackwell experiments.14 When the result of an experiment is ob-
served by an individual with belief α, π induces a distribution over posterior be-
liefs ⟨π|α⟩ ∈ ∆([0, 1]) through Bayes’ rule, where E⟨π|α⟩β = α. We say that two ex-
periments π and π′ are Blackwell equivalent, denoted π ∼B π′, if for any α ∈ [0, 1],
⟨π|α⟩ = ⟨π′|α⟩.15 We denote the Blackwell ordering by ≿B throughout.

Experimentation is costly for the agent. We assume that, when the agent con-
ducts the experiment π, he pays the log-likelihood ratio cost (Pomatto et al., 2023)
C(π), where

C(π) ≡ ∑
ω∈{0,1}

∫
S

log
(

π(s|ω)

π(s|1 − ω)

)
dπ(s|ω) = E⟨π|α⟩[G(β|α)] for any α ∈ (0, 1),

where G(β|α) ≡ β
α log

(
β

1−β

)
+ 1−β

1−α log
(

1−β
β

)
is the posterior-specific cost for β

given an initial belief α. We assume that these costs are not so great as to make
experimentation unprofitable for the agent when the principal correctly infers his
type: For all θ ∈ Θ, there exists π ∈ Π such that E⟨π|θ⟩[U(β)]− C(π) > 0.

The log-likelihood ratio (LLR) cost function has three desirable properties in
the context of our model. First, LLR costs are prior-independent. For a fixed ex-
periment π ∈ Π, the cost of conducting the experiment C(π) does not depend
on the agent’s type. Experiments should be interpreted as physical processes in
our model (e.g. clinical trials and stress tests), which is intuitively consistent with
prior-independent information costs (Bloedel and Zhong, 2021). Second, LLR costs
are posterior separable.16 Posterior separability yields tractability; in information
design involving posterior separable cost functions, the concavification approach
in Kamenica and Gentzkow (2011) can be used to characterize solutions. Third,
among prior-independent cost functions, LLR costs are uniquely characterized
by a constant marginal cost condition (Pomatto et al., 2023): C(απ + (1 − α)π′) =

αC(π) + (1 − α)C(π′) for all α ∈ [0, 1] and all experiments π, π′. That is, the cost
of a composite experiment that randomizes over π and π′ is the same as the ex-

14Formally, let Π = {(S, π) : S ∈ S} be the set of all Blackwell experiments where S is a
sufficiently rich set containing sets of signal realizations. It suffices, for instance, to let S be any
uncountable Polish space.

15Equivalently, π ≿B π′ and π′ ≿B π where ≿B is the Blackwell informativeness ordering. When
showing two experiments are Blackwell equivalent, it suffices to show that ⟨π|α⟩ = ⟨π′|α⟩ for some
non-degenerate prior α ∈ (0, 1).

16But not uniformly posterior separable.
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pected cost of randomizing over π and π′. This last feature (and the LLR func-
tional form) are not needed for most of our main results, but allow us to character-
ize the distortion from private information in our setting (Theorem 3).

Delegation Prior to the agent’s experimentation decision, the principal can choose
the menu D ⊆ Π of experiments that are available to the agent. This menu can con-
tain any Blackwell experiments that the principal wants, but the principal must al-
low the agent to refrain from experimentation: D must contain the uninformative
experiment ({0}, π0) with π0(0|0) = π0(0|1) = 1.

Formally, a menu D can be written as D = {πp}p∈P ∪ {π0} for some index set
P . Associated with each index p ∈ P is a set of types Θp ⊆ Θ that πp is targeted
at. After observing that the agent selected πp ∈ D, the principal infers that the
agent’s type is in Θp, and therefore updates her belief to an interim belief βp =

Eσ[θ|θ ∈ Θp].17 A menu is implementable if Θp is the set of types that actually select
the experiment πp. We focus on minimal optimal menus without loss of generality;
that is, we assume Θp ̸= ∅ for all p ∈ P .

An appropriately designed menu can allow the principal to perfectly infer the
agent’s private information from the experiment he chooses. A screening menu is
a menu D for which |Θp| = 1 for all p ∈ P . For screening menus, it is without loss
to associate each index p ∈ P with the unique type θ that chooses πp. Therefore,
we can let P = Θ and write D = {πθ}θ∈Θ ∪ {π0}. Upon learning that the agent
has conducted πθ, the principal first updates her belief to θ before updating again
once she observes the experiment’s result. The distinguishing feature of screening
menus is that, even if πθ = πθ′ = π for some θ ̸= θ′, the principal can always
determine which type conducted experiment π. In contrast, a pooling menu is a
menu D for which |Θp| > 1 for some p ∈ P .

Contrary to canonical mechanism design environments, we cannot appeal to
the standard revelation principle (Myerson, 1982) to convert any pooling menu
into an equivalent screening menu.18 Knowing which type conducted a certain ex-

17In order for the principal’s interim beliefs after observing the agent’s choice of experiment to
be well-defined, we require that each Θp is measurable.

18We can, however, apply the revelation principle from Doval and Skreta (2022). They show that
in a design problem where the designer has limited commitment over how they use an agent’s pri-
vate information (as in our setting), the designer can restrict her attention to mechanisms where
each type submits an input message, and the output message is a belief over the agent’s type. The
designer commits to a Bayes-plausible mapping between input and output messages, and an al-
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periment is payoff relevant to both the principal and the agent, since this informa-
tion changes the distribution over posteriors that an experiment induces.

Example 1. Consider, for instance, a menu D = {π, π0} consisting only of a single
partially informative binary experiment π and the uninformative experiment. If
all types conduct experiment π, the principal updates from their prior β0. Suppose
β0 = 1/3, b = 2/3, θ0 = 1/8, and θN = 1/2. Suppose S = {s, s} where π(s|1) =
9/10 and π(s|0) = 1/10. Then, the principal’s posterior after observing s is

π(s|1)β0

π(s|1)β0 + π(s|0)(1 − β0)
=

9
11

>
2
3

so observing s leads the principal to approve the project. Now consider the screen-
ing menu D = {πθ}θ∈Θ ∪ {π0} where each πθ = π. Consider type θ = θ0. Know-
ing that the experiment π comes from type θ0 induces a posterior

π(s|1)θ0

π(s|1)θ0 + π(s|0)(1 − θ0)
=

9
16

<
2
3

and so observing s in the screening menu when θ = θ0 does not lead the principal
to approve the project.

In standard delegation problems, each delegation set D is equivalent to a di-
rect mechanism that maps each agent’s type report to their choice from D.19 Ex-
ample 1 shows that delegation sets and direct mechanisms are not interchange-
able in our setting, because the agent’s type report may provide the principal with
payoff-relevant information that cannot be inferred from the agent’s choice from
the delegation set (i.e., with a pooling menu). Consequently, because the principal
cannot commit to a decision rule, the direct mechanism associated with a delega-
tion set may not be implementable. In particular, the principal may approve after a
positive test result when the agent selects from a delegation set, but may reject af-
ter the same result in the associated direct mechanism. Thus, it is not without loss
of generality to consider truth-telling direct revelation mechanisms (equivalently,
screening menus).

location rule which maps output messages into actions. In our setting, any delegation set is asso-
ciated with a canonical mechanism. Screening menus are associated with canonical mechanisms
where the mapping between input and output messages is fully revealing; that is, the output mes-
sage reveals the agent’s type.

19Truth-telling is automatically optimal for the agent, since the direct mechanism simply assigns
them their choice from the mechanism.
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Timing To summarize, the timing of the game is as follows:

1. Nature realizes a state ω ∈ {0, 1}.

2. The agent receives a private signal and updates to a belief θ ∈ Θ.

3. The principal chooses a menu D.

4. The agent selects an experiment π ∈ D, and the principal observes this choice
and updates to an interim belief.

5. The result of the experiment is realized, publicly revealed, and the principal
updates to a posterior belief.

6. The principal makes an approval decision.

3 Implementability

Before we determine which delegation set maximizes the principal’s expected
payoff, we first ask which menus are implementable. A menu D is implementable if
each type finds it optimal to choose the experiment designed for them. That is, if
θ ∈ Θp, an agent of type θ prefers πp to any other experiment in D. We describe
implementability in terms of conditions on the distributions over posteriors an
experiment can induce.

Since the agent’s cost function is posterior-separable, his payoffs depend on the
experiment he selects only through the distribution of posterior beliefs that the ex-
periment induces. However, when the principal cannot infer the agent’s private
information about the state by observing his choice of experiment, she will have
a different posterior than the agent does after observing the experiment’s result.
Consequently, the same experiment can induce up to three different distributions
that are relevant to our analysis: the distribution of the principal’s posteriors, the
distribution of the agent’s posteriors, and the distribution of the principal’s poste-
riors from the perspective of the agent.

The first two of these can be described using notation that we have already
introduced: if the principal’s interim belief after observing the agent’s choice is α,
then π induces the distribution ⟨π|α⟩ for her and ⟨π|θ⟩ for the agent. Lemma 1
characterizes the last of these distributions in the same terms.20

20Lemma 1 is complementary to Proposition 1 in Alonso and Câmara (2016), who also study a
setting where the priors of the sender and receiver may differ: they compute the receiver’s belief as
a function of the sender’s belief, whereas we instead compute the probability that the sender places
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Lemma 1 (Agent’s Distribution of Principal’s Posteriors). Suppose α is the princi-
pal’s interim belief after she observes the agent choose the experiment π. Then the agent
places probability

∫
B

(
θ
α β + 1−θ

1−α (1 − β)
)

d⟨π|α⟩(β) on the principal updating her belief
to β ∈ B after observing the result of π.

Lemma 1 allows us to describe the set of implementable menus. First, observe
that implementable menus must be individually rational: they provide each type of
agent with an expected payoff of at least zero (their payoff when they choose the
totally uninformative experiment π0). That is, a menu D = {πp}p∈P ∪ {π0} is
individually rational if

E⟨πp|βp⟩

[(
θ

βp
β +

1 − θ

1 − βp
(1 − β)

)
U(β)− G(β|βp)

]
≥ 0 (IRθ-P)

holds for all p ∈ P and all θ ∈ Θp. The coefficient on U(β) arises because the
agent’s payoff depends on the principal’s belief, rather than his own. Since the prin-
cipal cannot perfectly infer θ by observing πp when Θp is not a singleton, Lemma
1 shows that from the agent’s perspective, the expected value of a function of the
principal’s beliefs is precisely the expected value of

(
θ

β0
β + 1−θ

1−β0
(1 − β)

)
times that

function.
In addition to being individually rational, an implementable menu must be

incentive compatible: if θ ∈ Θp, then agents of type θ prefer the experiment πp to any
experiment conducted by another type. Formally, a menu D = {πp}p∈P ∪ {π0} is
incentive compatible if

θ ∈ Θp =⇒ E⟨πp|βp⟩

[(
θ

βp
β +

1 − θ

1 − βp
(1 − β)

)
U(β)− G(β|βp)

]
≥ E⟨πp′ |βp′ ⟩

[(
θ

βp′
β +

1 − θ

1 − βp′
(1 − β)

)
U(β)− G(β|βp′)

]
∀p′ ∈ P

(ICθ-P)

holds for all θ ∈ Θ and all p ∈ P . By construction, individual rationality and
incentive compatibility are necessary and sufficient conditions for a menu to be
implementable.

In principle, pooling can occur in a general manner: that is, the principal could

on the receiver having a certain belief.
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try to design a menu where any set of types pool together on the same experi-
ment. However, the individual rationality and incentive compatibility conditions
place substantial restrictions on the manner in which pooling can occur. If an im-
plementable menu targets the experiment πp at types θ, θ′ ∈ Θp with θ′ < θ, but
targets a different experiment πp′ at some type θ̃ ∈ (θ′, θ), then the agent must be
indifferent between πp and πp′ regardless of their type. Lemma 2 shows that this
allows the principal to construct a better menu D′ = {πp}p∈P ′ ∪ {π0} by replac-
ing one of these experiments with the other, so that pooling is local: That is, for each
p ∈ P ′, if θ, θ′ ∈ Θp and θ̂ ∈ Θ, θ′ ≤ θ̂ ≤ θ ⇒ θ̂ ∈ Θp.

Lemma 2 (Pooling Is Local Without Loss). For any implementable menu D, there is
an implementable menu D′ where pooling is local that gives the principal a weakly higher
ex ante expected payoff than D.

A binary experiment is (S, π) with S = {s, s} and (without loss) π(s|0) ≤ π(s|1).
If every informative experiment π ̸∼B π0 in a menu D is binary, we say that it is
a binary menu. As observed by Doval and Skreta (2023), we cannot appeal to stan-
dard two-state information design arguments to conclude that binary menus are
optimal, because the principal faces both incentive compatibility and individual
rationality constraints. Nevertheless, we show that binary experiments are with-
out loss in our setting. Intuitively, if D is a menu containing non-binary experi-
ments, replacing each non-binary experiment πp with the binary experiment π′

p

that leads the principal to approve the project with the same probabilities condi-
tional on the state does not lower principal payoffs, but weakens the agents’ incen-
tive constraints since C(πp) > C(π′

p).

Lemma 3 (Menus Are Binary Without Loss). For any implementable menu D, there is
an implementable binary menu D′ that gives the principal a weakly higher ex ante expected
payoff than D.

3.1 Screening vs. Pooling

In classic delegation settings, e.g. Holmström (1977) and Alonso and Matouschek
(2008), the principal does not benefit from learning the agent’s private information
since the principal has delegated the right to make a decision to the agent. Thus,
pooling menus are typically optimal.21 In our setting, since the principal only dele-

21The optimal menu in Alonso and Matouschek (2008), for instance, is a pooling menu.
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gates the experimentation decision to the agent and retains the right to make an ap-
proval decision, learning the agent’s private information is beneficial, as the prin-
cipal can leverage the agent’s private information when deciding whether or not
to approve the project. This reasoning suggests that a screening menu is optimal.

However, the principal faces a tradeoff between screening and pooling menus.
On one hand, the principal benefits directly from screening menus as it allows her
to learn the agent’s private information. On the other hand, screening makes it
more challenging to satisfy lower types’ individual rationality constraints (Exam-
ple 1). Despite this tension, for any pooling menu, the principal can construct a
new menu that makes her better off.

Theorem 1 (Screening Dominates Pooling). If the pooling menu D is implementable,
then there exists an implementable screening menu D̃ which gives the principal a weakly
higher ex ante expected payoff.

The intuition is as follows. Given an implementable pooling menu, suppose we
construct a screening menu where each type’s experiment is a copy of the (with-
out loss, binary) experiment they choose from the pooling menu. This allows the
principal to learn θ before he makes an approval decision, while leaving the ex-
periment conducted by each type unchanged. Clearly, this cannot decrease her ex-
pected payoff. But it might cause some type θ’s participation (IRθ-P) or incentive
compatibility (ICθ-P) conditions to fail.

If it does, it must be because learning θ causes the principal to reject the project
even after receiving a positive result from the experiment: Otherwise, the exper-
iment gives any type that conducts it the same expected payoff as it did when it
was part of the pooling menu.22 In such cases, we can restore type θ’s participa-
tion constraint by assigning him an experiment conducted by a lower type, or the
uninformative experiment π0. And as Lemma 10 in the appendix shows, we can
restore incentive compatibility by assigning experiments the principal prefers to
types above θ. Both of these changes must (weakly) increase the principal’s ex-
pected payoff even further.

22Similarly, any other type’s experiment either gives type θ the same payoff (if the principal
still approves after a positive result) or a worse payoff (otherwise), so his incentive compatibility
constraints are no more stringent.
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3.2 Screening Menu Implementability

In light of Theorem 1, we focus on screening menus for the rest of the paper.
This simplifies the individual rationality and incentive compatibility constraints
facing the principal. Formally, a screening menu D = {πθ}θ∈Θ ∪ {π0} is individu-
ally rational if

E⟨πθ |θ⟩ [U(β)− G(β|θ)] ≥ 0 (IRθ)

holds for all θ, and is incentive compatible if

E⟨πθ |θ⟩ [U(β)− G(β|θ)] ≥ E⟨πθ′ |θ′⟩

[(
θ
θ′ β + 1−θ

1−θ′ (1 − β)
)

U(β)− G(β|θ′)
]

(ICθ)

holds for all θ, θ′ ∈ Θ.
Even though our setting does not involve transfers and the principal cannot in-

centivize the agent by altering his approval threshold, we can still offer a character-
ization of the class of implementable menus that is reminiscent of standard trans-
ferable utility contracting results (e.g., Maskin and Riley (1984)).

Proposition 1 (Implementable Menus). Let D = {πθ}θ∈Θ ∪ {π0} be a screening
menu.

i. If D satisfies

(EC) Envelope Condition: For all θ,

E⟨πθ |θ⟩[U(β)]− C(πθ) = ∑
θi<θ

(θi+1 − θi)E⟨πθi
|θi⟩

[(
β−θi

θi(1−θi)

)
U(β)

]
; (ECθ)

(M) Monotonicity: For all θ ≥ θ′,

E⟨πθ |θ⟩

[(
β − θ

θ(1 − θ)

)
U(β)

]
≥ E⟨πθ′ |θ′⟩

[(
β − θ′

θ′(1 − θ′)

)
U(β)

]
, (M(θ, θ′))

then D is implementable.

ii. If D is implementable, it satisfies (M) (monotonicity).

iii. If D is implementable, there exists an implementable screening menu D′ = {π′
θ}θ∈Θ ∪

{π0} that satisfies (EC) such that E⟨π′
θ |θ⟩[W(β)] ≥ E⟨πθ |θ⟩[W(β)] for each θ ∈ Θ.
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The key insight behind this characterization is that the law of iterated expecta-
tions allows us to decompose the expectations in (ICθ) into expectations of U con-
ditional on the state. This decomposition has two implications. First, because exper-
iments are multidimensional objects, these conditional expectations can vary sepa-
rately, just like transfers and quantities in, e.g., Maskin and Riley (1984) and Mussa
and Rosen (1978). And since types differ precisely in the probabilities that they
assign to each state, they can be screened by offering a lower type an experiment
that yields higher expected utility conditional on state 0 and by offering a higher
type an experiment that yields higher expected utility conditional on state 1. For-
mally, every implementable screening menu must satisfy the following condition:
if θ > θ′, then

E⟨πθ |θ⟩[U(β)|ω = 1]− C(πθ) ≥ E⟨πθ′ |θ′⟩[U(β)|ω = 1]− C(πθ′);

E⟨πθ |θ⟩[U(β)|ω = 0]− C(πθ) ≤ E⟨πθ′ |θ′⟩[U(β)|ω = 0]− C(πθ′).

As in the standard transferable utility model, this screening is most effective when
local incentive compatibility constraints bind. However, these local constraints —
captured in (ECθ) — are not enough to ensure that a menu is incentive compati-
ble. Instead, ensuring that global deviations in type reports are not advantageous
requires an additional monotonicity condition. Intuitively, a monotonic menu is
one in which the difference between the conditional expected payoff in state ω = 1
and state ω = 0 is increasing in the type report.

Second, the individual rationality constraint for any type θ > θ0 is redundant,
just like in a transferable utility setting. Since U is increasing, its expectation con-
ditional on ω = 1 is always higher than its expectation conditional on ω = 0, and
so the expectations on the right hand side of (ICθ) are higher for θ > θ0 than for
θ = θ0.

3.3 Discussion

A common measure of the performance of a diagnostic test in the medical litera-
ture is Youden’s index (Youden, 1950). For a binary test, Youden’s index is the differ-
ence between the true positive rate and the false positive rate. In our notation, we
denote the Youden’s index for a binary experiment π as η(π) := π(s|1)− π(s|0).

In the literature, tests with higher Youden’s indices are often considered to be
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better performing. This is not entirely congruent with Blackwell’s Theorem: If
one binary experiment is Blackwell-more informative than another, it must have
a higher Youden’s index, but the converse is not true. However, a clarification
reveals the relevance of the Youden’s index to implementation: tests with higher
Youden’s indices are better performing for an agent with transparent motives when
the hypothesis being tested is more likely to be true.

Observe that when a type-θ agent chooses a binary experiment πθ from a screen-
ing menu, his expected payoff can be written

E⟨πθ |θ⟩[U(β)]− C(πθ) = (θη(πθ) + πθ(s|0))u − C(πθ). (1)

Thus, since the cost of experimentation C is prior-independent, an experiment’s
Youden’s index is a sufficient statistic for the way that the agent’s payoff from
conducting it depends on her type. In particular, if the Youden’s index of one
experiment is higher than that of another, then whenever some type chooses the
former over the latter, all higher types do as well. That is, the Youden’s index is the
aspect of the experiment in which the agent’s payoff has the single crossing property in θ. It
should not be surprising, then, that the monotonicity constraint (M) is equivalent
to requiring η(πθ) to be non-decreasing in θ. Likewise, the envelope condition
(EC) means that the menu gives each type a payoff equal to the weighted sum of
the lower types’ Youden indices.

Proposition 2 (Youden’s Index and Implementation). Suppose that D = {πθ}θ∈Θ ∪
{π0} is a binary screening menu that is individually rational.

i. D satisfies the monotonicity condition (M) if and only if η(πθ) is non-decreasing in θ.

ii. D satisfies the envelope condition (EC) if and only if E⟨πθ |θ⟩[U(β)] − C(πθ) =

u ∑θi<θ(θi+1 − θi)η(πθi) for all θ ∈ Θ.

4 Optimal Delegation

In Section 3, we showed that screening menus are without loss of generality for
the principal. Now, we study the principal’s problem of designing such a menu.
First, in Section 4.1, we show that an optimal menu exists, and characterize it.
Sections 4.2 and 4.3 then show how asymmetric information makes the optimal
menu inefficient.
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4.1 The Principal’s Problem

Since the optimal menu from the principal’s perspective is a screening menu,
Proposition 1 allows us to write the principal’s problem as

max
{πθ}θ∈Θ∈ΠΘ

∑
θ∈Θ

E⟨πθ |θ⟩[W(β)]σ(θ) (COPT)

s.t.
(EC) : E⟨πθn |θn⟩[U(β)− G(β|θn)] = ∑i<n(θi+1 − θi)E⟨πθi

|θi⟩

[(
β−θi

θi(1−θi)

)
U(β)

]
∀n;

(M) : E⟨πθn |θn⟩

[(
β−θn

θn(1−θn)

)
U(β)

]
≥ E⟨πθn−1

|θn−1⟩

[(
β−θn−1

θn−1(1−θn−1)

)
U(β)

]
∀n > 0.

Theorem 2 extends the duality results of Doval and Skreta (2023), allowing us
to write (COPT) as an unconstrained problem using the method of Lagrange.23

In particular, we extend the key result in Doval and Skreta (2023) to solve prob-
lems where the choice variable is a menu of experiments and to allow for con-
straint functions that are not upper semi-continuous. As we show, the Lagrangian
(COPT’) has a solution, and so (COPT) must as well.

Theorem 2 (Existence and Uniqueness). A solution exists to (COPT). This solution
is unique (up to Blackwell equivalence) and binary. Furthermore, there exists a family of
non-negative Lagrange multipliers {λ∗

n}N
n=0, {δ∗n}N

n=1 such that D∗ = {π∗
θ}θ∈Θ ∪ {π0}

solves (COPT) if and only if {π∗
θn
}N

n=0 solves

max
{πθn}N

n=0∈ΠN+1

N

∑
n=0

E⟨πθn |θn⟩[W(β)]σ(θn) (COPT’)

+ λ∗
n

(
E⟨πθn |θn⟩[U(β)− G(β|θn)]− ∑

i<n
(θi+1 − θi)E⟨πθi

|θi⟩

[(
β−θi

θi(1−θi)

)
U(β)

])
+ δ∗n

(
E⟨πθn |θn⟩

[(
β−θn

θn(1−θn)

)
U(β)

]
− E⟨πθn−1

|θn−1⟩

[(
β−θn−1

θn−1(1−θn−1)

)
U(β)

])
1n>0.

Furthermore, for all n > 0,

δ∗n

(
E⟨π∗

θn
|θn⟩

[(
β−θn

θn(1−θn)

)
U(β)

]
− E⟨π∗

θn−1
|θn−1⟩

[(
β−θn−1

θn−1(1−θn−1)

)
U(β)

])
= 0. (CS)

Moreover, the maximized values of (COPT) and (COPT’) are equal.

By rearranging the terms in (COPT’), we can write the unique solution D∗ =

23Other authors have employed the Lagrangian approach to solve delegation problems. See, for
instance, Amador and Bagwell (2013), Guo (2016), and Kartik et al. (2021).
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{π∗
θ}θ∈Θ ∪ {π0} to (COPT) as the tuple of (unique) solutions to a set of type-by-

type problems: For each n,

π∗
θn

∈ arg max
π∈Π

E⟨π|θn⟩

W(β)σ(θn) + λ∗
n(U(β)− G(β|θn))︸ ︷︷ ︸

Surplus Term S(β,θn)

− ρ∗n

(
β − θn

θn(1 − θn)

)
U(β)︸ ︷︷ ︸

Rent Term R(β,θn)

 ,

where ρ∗n :=

(
δ∗n+1 + (θn+1 − θn)

N

∑
i=n+1

λ∗
i

)
1n<N − δ∗n1n>0. (TBTθn)

These solutions thus maximize virtual surplus: that is, a weighted sum of the prin-
cipal and agent’s expected payoffs (the surplus term E⟨π|θn⟩[S(β, θn)]), minus a rent
term E⟨π|θn⟩[R(β, θn)] (for a binary experiment, a scalar multiple of the Youden’s in-
dex discussed in Section 3.3). Figure 1 depicts the objective function of these type-
by-type problems. As we show in Section 4.3, the latter term distorts the problem’s
solution away from efficiency, except in the case of the highest type θN.

10
β

b

β β

Figure 1: Solution to the Type-by-Type Problems. The type-by-type objective functions
(black) are each strictly concave in β on [0, b) and on [b, 1], with a jump discontinuity at
b. This gives each of the problems a unique binary solution (Lemma 11 in the appendix),
which we use to show uniqueness in Theorem 2.

Exclusion

The principal may find it optimal to exclude some types by not offering them an
informative experiment that they are willing to conduct; i.e., we may have π∗

θ ∼B

π0 for some types. Lemma 4 shows that the set of included types Θ̃ := {θ ∈ Θ :
π∗

θ ̸∼B π0} forms an upper set: that is, if it is optimal for the principal to exclude
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one type θ, it must also be optimal for him to exclude any type θ′ ≤ θ with worse
news about the state of the world.

Lemma 4 (Exclusion Is At The Low End). Θ̃ = {θ ∈ Θ : θ ≥ θ} for some θ ∈ Θ.

Intuitively, a binary experiment π is uninformative if and only if its Youden’s
index η(π) = π(s|1)− π(s|0) is zero. Since (M) is equivalent to the monotonicity
of the Youden’s index, it follows that any implementable menu of binary experi-
ments — including D∗ — must exclude only at the low end of the distribution of
private information.

The Monotonicity Constraint

By its nature, the monotonicity constraint (M) must bind on intervals: that is,
if (M(θ′′, θ′)) binds for some θ′′ > θ′, (M(θ, θ′)) must also bind for all θ ∈ (θ′, θ′′).
But unlike in standard contracting problems where the choice variable is one-
dimensional, this does not guarantee that each type in such an interval conducts
the same experiment — just that those experiments have the same Youden’s index
η. However, Lemma 5 shows that in the optimal menu D∗, if two types conduct ex-
periments with the same Youden’s index, the experiments must be identical.24

Lemma 5 (Experiments Where Monotonicity Binds). Suppose (M(θ′′, θ′)) binds for
some θ′′ > θ′. Then for each θ ∈ [θ′, θ′′], π∗

θ = π∗
θ′′ .

The intuition is as follows. Suppose monotonicity binds on the interval I, so
that the experiments π∗

θ conducted by types θ ∈ I have identical Youden’s indices
η. Then on I, both sides of the envelope condition (ECθ) are linear in θ, with the
same coefficient η. It follows that (ECθ) can only be satisfied on I if every exper-
iment π∗

θ conducted by a type θ ∈ I has the same cost C(πθ). If multiple exper-
iments have the same Youden’s index and the same cost, the principal optimally
includes in D∗ the one with the lowest false positive rate.

4.2 The Pareto Frontier

To see how experimentation is distorted by the need to induce the agent to vol-
untarily reveal his private information, we must first characterize what it is dis-
torted away from. Hence, for each type of agent, we describe the set of experiments

24More specifically, they must be identical save for the labeling that identifies the type that con-
ducted them.
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that are Pareto efficient, given the agent’s type. Since transfers are not possible in
our setting, these sets are not singletons. Instead, there is a Pareto frontier of effi-
cient experiments for each type, with one end of that frontier being optimal for the
principal, and the other being optimal for the agent.

Formally, an experiment π is Pareto efficient for type θ if there is no π′ such that
E⟨π′|θ⟩[W(β)] ≥ E⟨π|θ⟩[W(β)] and E⟨π′|θ⟩[U(β)] − C(π′) ≥ E⟨π|θ⟩[U(β)] − C(π),
with one of the inequalities strict. As one might expect, such experiments are pre-
cisely those that solve a social planner’s problem.

Proposition 3 (Efficiency and the Social Planner’s Problem). π is Pareto efficient
for type θ if and only if there exist λp ≥ 0 and λa ≥ 0, with one inequality strict, such that

⟨π|θ⟩ ∈ arg max
τ∈∆(∆(Ω))

{
Eτ

[
λpW(β) + λa(U(β)− G(β|θ))

]
s.t. Eτβ = θ

}
. (SPPθ)

Together, Proposition 3 and Lemma 11 allow us to characterize the type-θ Pareto
frontier geometrically. In particular, Lemma 11 shows that when λa ̸= 0, (SPPθ)
has a unique solution characterized by one of three alternatives. First, if there are
posteriors β and β such that β < θ < b < β and

−λaG′(β|θ) = λp(w1 − w0)− λaG′(β|θ) = λp(w0+(w1−w0)β)+λa(u−G(β|θ))+λaG(β|θ)
β−β

,

or equivalently, since b ≡ −w0
w1−w0

,

λp(−w0)
λab = G′(β|θ)− G′(β|θ) and

0 = u − G(β|θ)− G′(β|θ)(b − β)︸ ︷︷ ︸
tangent line to U−G(·|θ) at β

+ G(β|θ) + G′(β|θ)(b − β)︸ ︷︷ ︸
tangent line to U−G(·|θ) at β

, (2)

then (SPPθ)’s unique solution is given by the unique Bayes-plausible distribution
that induces the posteriors β and β. Geometrically, this condition means that the
tangent lines to the agent’s value function at β and β must cross at b, and the
difference in their slopes (and since G(·|θ) is strictly convex, the distance β − β) is
increasing in the relative Pareto weight on the principal.25 Figure 2 illustrates.

25To understand why, recall that W is continuous, affine to the right of the approval threshold b,
and zero to the left of b. Then adding λp/λaW(β) to the agent’s value function (thus yielding the
objective in (SPPθ)) essentially rotates the function — and thus its tangent lines — upward to the
right of b. Consequently, the tangent lines to the value function in (SPPθ) at β and β coincide (as
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U(β)−G(βjθ)

β
0

β0

Figure 2: Characterization of the Pareto Frontier. Each experiment that is efficient for
type θ induces a pair of posteriors such that the tangent lines to the agent’s value function
at those posteriors cross at b. When the Pareto weight on the principal is higher relative to
the weight on the agent, those posteriors are further apart, and the tangent lines cross at
a higher point: The experiment that induces β′ and β

′
solves (SPPθ) for a higher value of

λp/λa, while the experiment that induces β and β solves (SPPθ) for a lower value of λp/λa.

If the Pareto weight assigned to the principal is small enough relative to the
Pareto weight on the agent, (2) becomes impossible to satisfy. Then, Lemma 11’s
second alternative26 says that (2)’s unique solution is the unique Bayes-plausible
distribution that induces the posterior beliefs β and b, where β < θ is pinned down
by

−G(β|θ)− G′(β|θ)(b − β) = u − G(b|θ), (3)

Geometrically, this requires that at the approval threshold b, the agent’s value
function coincides with the tangent line to his value function at β. Thus, in this
case, (SPPθ)’s solution is precisely the distribution of posteriors that maximizes the
agent’s payoff when his type is common knowledge.

Corollary 1 summarizes.

Corollary 1. π is Pareto efficient for type θ if and only if one of the following holds:

is necessary for the two posteriors to support a solution) exactly when tangent lines to the agent’s
value function U − G(·|θ) cross at the approval threshold, and have slopes that differ by the relative
weight λp/λa that the planner places on the principal times the slope of his value function.

26Lemma 11’s third alternative is ruled out: By assumption, there is an informative experiment
that gives the agent a nonnegative payoff — and thus Pareto improves upon the uninformative
experiment π0.
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i. supp⟨π|θ⟩ = {β, β}, β < θ < b < β, and (2) holds for some λa, λp > 0.

ii. supp⟨π|θ⟩ = {β, b}, β < θ, and (3) holds.

iii. π is fully informative: π ∼B π∞, where π∞ is the binary experiment with π∞(s|1) =
π(s|0) = 1.

4.3 Distortion

Corollary 1 describes the experiments that are on each type’s Pareto frontier.
This allows us to describe how and why that type’s experiment from the principal’s
optimal menu is distorted away from the frontier. In the case of the highest type,
the answer is simple: it isn’t. Thus, we arrive at the classical result that there is no
distortion at the top.

Proposition 4 (No Distortion at the Top). In the principal’s optimal screening menu,
the high type’s experiment π∗

θN
is Pareto efficient for type θN.

The intuition is standard when the highest type’s monotonicity constraint M(θN, θN−1)

does not bind: Then, the Lagrange multiplier δ∗N is zero, and so the type-by-type
problem for the highest type coincides with the social planner’s objective in (SPPθ),
given appropriate Pareto weights.27 If, on the other hand, the highest type’s mono-
tonicity constraint binds, the argument is more subtle: If π∗

θN
was not on the Pareto

frontier, then the principal can construct a strictly better implementable menu by
replacing π∗

θN
with some experiment π′ for all types that conduct π∗

θN
. This can be

done in a way that makes the principal strictly better off without affecting agent
payoffs since π∗

θN
is not on the Pareto frontier.

Just like in optimal contracting problems with transfers, however, there is dis-
tortion for types other than the highest. When a type-θ agent chooses the experi-
ment πθ′ designed for some other type θ′ ̸= θ, the principal shifts his interim belief
to θ′, rather than θ. Because of this, the type-θ incentive compatibility constraint —
and hence the Lagrangian term in (COPT’) — contains an extra coefficient on U(β)

that depends on the posterior belief and is not present in the social planner’s prob-
lem for any Pareto weights λa and λp. This distorts the tangent line conditions in
(2), and thus the experiment they pin down. In particular, when the principal does

27Specifically, for Pareto weights λp = σ(θ) and λa = λ∗
θ .
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not exclude θn — i.e., when π∗
θn

is not the uninformative experiment π0 — Lemma
11 shows that ⟨π∗

θn
|θn⟩’s support {β, β} is characterized by

−λ∗
nG′(β|θn) =

σ(θn)W(β) + λ∗
nu − R(β, θn)− λ∗

n(G(β|θn)− G(β|θn))

β − β
, (4)

and when β > b,

−λ∗
nG′(β|θn) = σ(θn)(w1 − w0) + Rβ(β, θn)− λ∗

nG′(β|θn). (5)

Equivalently, since U and R(·, θn) are affine on [b, 1], we have28

−G(β|θn)− G′(β|θn)(b − β)︸ ︷︷ ︸
tangent line to U−G(·|θn) at β

= u − G(β|θn)− G′(β|θn)(b − β)︸ ︷︷ ︸
tangent line to U−G(·|θn) at β

− R(b, θn)/λ∗
n︸ ︷︷ ︸

distortion term

; (6)

and when β > b, G′(β|θn)− G′(β|θn) =
σ(θn)(w1−w0)+Rβ(β,θn)

λ∗
n

.
Observe that there is an additional “distortion term” in (6) that is not present

in (2). This ensures that instead of being characterized by tangent lines that cross
at the approval threshold, the posteriors β and β that support ⟨π∗

θ |θn⟩ are charac-
terized by tangent lines that have a gap equal to the distortion term. When type θn’s
downward monotonicity constraint M(θn, θn−1) does not bind, we can show that
the distortion term is positive (Lemma 17 in the appendix); consequently, β is in-
efficiently high given β, and β is inefficiently high given β. In fact, this is also true
for types whose downward monotonicity constraint does bind, since their experi-
ment from the optimal menu is the same as the highest type below them for whom
such constraints do not bind (Lemma 5).29 Figure 3 illustrates.

28When β = b, (6) follows immediately from (4); when β > b, application of (5) yields

−G(β|θn)− G′(β|θn)(b − β) = −G(β|θn)− G′(β|θn)(b − β) + u +
1

λ∗
n

(
σ(θn)W(β)− R(β, θn)
−
(
σ(θn)(w1 − w0)− Rβ(β, θn)

)
(β − b)

)
= −G(β|θn)− G′(β|θn)(b − β)− R(b, θn)/λ∗

n.

29In Theorem 3 (i), we show something stronger: whether or not a type’s downward monotonic-
ity constraint binds, the principal’s optimal menu yields an experiment with an inefficiently low
false negative rate.
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θβ

U(β)−G(β|θ)
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distortion
term

Figure 3: Distortion of the type-θ experiment. Suppose a binary experiment πθ induces
the posterior β. For π∗

θ to be efficient for type θ, it would need to also induce βe: At
the approval threshold b, the tangent line to the agent’s value function at βe crosses the
tangent line to the value function at β. But if π∗

θ solves the principal’s type-by-type problem
(TBTθn), it must induce β instead of βe, since the tangent lines to the value function at βe
and β differ by the distortion term at β.

This geometric characterization captures the key way that the type-θ agent’s
experiment π∗

θ from the optimal menu differs from every experiment that is Pareto
efficient for him. But not all of these differences can be accurately described as
distortion: Since there are no transfers, the fact that an experiment is efficient does
not imply that it makes both the principal and the agent better off than π∗

θ . Hence,
we focus on comparing the experiments from the optimal menu to Pareto improving
experiments on the Pareto frontier.

Theorem 3 shows that when faced with the optimal screening menu, every in-
cluded type other than the highest θN and (possibly) the lowest θ chooses an ex-
periment whose false negative rate is too high. Intuitively, since each posterior
induced by the optimal experiment is inefficiently high given the other, one can
show that if πθn Pareto improves upon π∗

θn
, it either (a) is Blackwell-more infor-

mative than π∗
θn

or (b) corresponds to a rightward shift of the posteriors induced by
π∗

θn
. In either case, it must have a lower false negative rate than π∗

θn
. Thus, private

information results in an inefficiently low chance of approval in the state where
the project is worth approving.

Theorem 3 (Distortion Everywhere Else). Let {π∗
θ}θ∈Θ be the principal’s optimal

menu.
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i. For each included type θ ∈ Θ̃ lower than the highest θN, π∗
θ is not Pareto efficient for

type θ.

ii. For each included type θ ∈ Θ̃ other than the highest θN and the lowest θ, π∗
θ has an

inefficiently high false negative rate: For any πθ on the Pareto frontier for type θ that
Pareto-improves upon π∗

θ for type θ,

πθ(s|1) < π∗
θ (s|1).

iii. Exclusion is inefficient: For every excluded type, there is a Pareto efficient experiment
that Pareto improves upon the totally uninformative experiment π0.

Theorem 3 characterizes how π∗
θ is distorted relative to any Pareto improve-

ment which is on the Pareto frontier. It turns out that it differs from the principal’s
take-it-or-leave-it, complete information offer πP

θ in the same way, even though
that experiment is only a Pareto improvement on π∗

θ for the lowest included type
θ. In fact, Proposition 5 shows a slightly stronger result: any experiment that is
better than π∗

θ for the principal, satisfies the agent’s participation constraint, and is
on the Pareto frontier has a lower false negative rate than π∗

θ .

Proposition 5 (Optimal Menu vs Complete Information Benchmark). For any πθ

on the Pareto frontier for type θ < θ < θN such that E⟨πθ |θ⟩[W(β)] ≥ E⟨π∗
θ |θ⟩[W(β)] and

E⟨πθ |θ⟩[U(β)− G(β|θ)] ≥ 0,

πθ(s|1) < π∗
θ (s|1).

5 Conclusion

This paper studies the optimal delegation of experiments to privately informed
agents. Based on the characterization results, we offer three main conclusions.

First, screening menus can screen agent types by offering different payoffs in
each state of the world. In our drug approval application, pharmaceutical compa-
nies with better news select clinical trials from screening menus that offer a higher
expected payoff conditional on the drug being effective than their lower confidence
counterparts. That is, the difference between the true and false positive rate (the
Youden’s index) must be increasing in the agent’s type report.
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Second, despite the fact that participation constraints are more difficult to sat-
isfy in screening menus, we find that screening dominates pooling. This contrasts
with the standard results in the delegation literature, since, in our setting, the prin-
cipal retains the right to make an approval decision. By delegating information
acquisition to a privately informed agent through a screening menu, the principal
learns the agent’s private information and can leverage this private information
when making an approval decision.

Finally, in the optimal menu there is no distortion for the highest type. How-
ever, there is distortion for all other types. Lower types are either excluded, which
is inefficient, or conduct an experiment with an inefficiently high false negative
rate. This results in an inefficiently low approval rate when the state of the world
is high. In our drug regulation application, too many good drugs are rejected.

Appendix

Corollary 2. If D is implementable, there exists an implementable menu D′ = {πp}p∈P ′ ∪
{π0} and {ak}K

0 such that ak > ak−1 for each k, and for each p ∈ P , Θp = (ak−1, ak]∩ Θ
for some k. Hence, it is without loss of generality to let P = {1, . . . , K}.

Proof. Follows immediately from Lemma 2.

Lemma 6 (Implementability). Let D = {πp}p∈P ∪ {π0} be a menu. Define the map-
ping p∗ : Θ → P by θ 7→ p∗(θ) where θ ∈ Θp∗(θ).

i. If D satisfies

(EC-P) Envelope Condition: For all θ,

E⟨πp∗(θ)|βp∗(θ)⟩

[(
θ

βp∗(θ)
β + 1−θ

1−βp∗(θ)
(1 − β)

)
U(β)

]
− C(πp∗(θ))

= ∑
θi<θ

(θi+1 − θi)E⟨πp∗(θi)
|βp∗(θi)

⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]
; (ECθ-P)

(M-P) Monotonicity: For all θ ≥ θ′,

E⟨πp∗(θ)|βp∗(θ)⟩

[(
β−βp∗(θ)

βp∗(θ)(1−βp∗(θ))

)
U(β)

]
≥ E⟨πp∗(θ′)|βp∗(θ′)⟩

[(
β−βp∗(θ′)

βp∗(θ′)(1−βp∗(θ′))

)
U(β)

]
,
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then D is implementable.

ii. If D is implementable, it satisfies (M-P).

iii. If D is implementable, there exists an implementable menu D̂ = {π̂p}p∈P ∪ {π0}
that satisfies (EC-P) such that E⟨π̂p|βp⟩[W(β)] ≥ E⟨πp|βp⟩[W(β)] for each p ∈ P .

Proof. Define the type-θ agent’s value from choosing π′
p∗(θ′) from a menu D′ =

{π′
p}p∈P ∪ {π0} as

V(θ, θ′|D′) = E⟨π′
p∗(θ′)|βp∗(θ′)⟩

[(
θ

βp∗(θ′)
β +

1 − θ

1 − βp∗(θ′)
(1 − β)

)
U(β)

]
− C(π′

p∗(θ′)).

Observe that

V(θ, θ′|D′) = V(θ′, θ′|D′) + (θ − θ′)E⟨π′
p∗(θ′)|βp∗(θ′)⟩

[(
β

βp∗(θ′)
+ 1−β

1−βp∗(θ′)

)
U(β)

]
= V(θ′, θ′|D′) + (θ − θ′)E⟨π′

p∗(θ′)|βp∗(θ′)⟩

[(
β−βp∗(θ′)

βp∗(θ′)(1−βp∗(θ′))

)
U(β)

]
. (7)

(i): Suppose D satisfies (EC-P) and (M-P).
By Bayes’ rule, for each p ∈ P , βp = ∑θ∈Θp θσ(θ) ∈ conv Θp ⊂ [0, b], and so for

all β ≥ b, β > βp. Then for all p ∈ P , E⟨πp|βp⟩

[(
β−βp

βp(1−βp)

)
U(β)

]
≥ 0. It follows

from (EC-P) that D satisfies (IRθ-P) for each θ ∈ Θ.
Now whenever θ > θ′,

V(θ, θ|D)− V(θ, θ′|D) = ∑
θi∈[θ′,θ)

(V(θ, θi+1|D)− V(θ, θi|D))

= ∑
θi∈[θ′,θ)


V(θi+1, θi+1|D)− V(θi, θi|D)

+(θ − θi+1)E⟨πp∗(θi+1)
|βp∗(θi+1)

⟩

[(
β−βp∗(θi+1)

βp∗(θi+1)
(1−βp∗(θi+1)

)

)
U(β)

]
−(θ − θi)E⟨πp∗(θi)

|βp∗(θi)
⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]
 (by (7))

= ∑
θi∈[θ′,θ)

(θ − θi+1)

E⟨πp∗(θi+1)
|βp∗(θi+1)

⟩

[(
β−βp∗(θi+1)

βp∗(θi+1)
(1−βp∗(θi+1)

)

)
U(β)

]
−E⟨πp∗(θi)

|βp∗(θi)
⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]
 (by (EC-P))

≥ 0 (by (M-P));
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and whenever θ < θ′,

V(θ, θ|D)− V(θ, θ′|D) = ∑
θi∈[θ,θ′)

(−V(θ, θi+1) + V(θ, θi))

= ∑
θi∈[θ,θ′)


−V(θi+1, θi+1|D) + V(θi, θi|D)

+(θi+1 − θ)E⟨πp∗(θi+1)
|βp∗(θi+1)

⟩

[(
β−βp∗(θi+1)

βp∗(θi+1)
(1−βp∗(θi+1)

)

)
U(β)

]
−(θi − θ)E⟨πp∗(θi)

|βp∗(θi)
⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]
 (by (7))

= ∑
θi∈[θ,θ′)

(θi+1 − θ)

E⟨πp∗(θi+1)
|βp∗(θi+1)

⟩

[(
β−βp∗(θi+1)

βp∗(θi+1)
(1−βp∗(θi+1)

)

)
U(β)

]
−E⟨πp∗(θi)

|βp∗(θi)
⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]
 (by (EC-P))

≥ 0 (by (M-P)).

It follows that D satisfies (ICθ-P) for each θ ∈ Θ. Hence, D is implementable.
(ii): By (ICθ-P) and (7), for any θ, θ′,

0 ≤ V(θ, θ|D)− V(θ, θ′|D) =
V(θ, θ|D)− V(θ′, θ′|D)

−(θ − θ′)E⟨πp∗(θ′)|βp∗(θ′)⟩

[(
β−βp∗(θ′)

βp∗(θ′)(1−βp∗(θ′))

)
U(β)

]
Swapping the labels θ and θ′ and multiplying by −1 yields

V(θ, θ|D)− V(θ′, θ′|D) ≤ (θ − θ′)E⟨πp∗(θ)|βp∗(θ)⟩

[(
β−βp∗(θ)

βp∗(θ)(1−βp∗(θ))

)
U(β)

]
It follows that for any θ′, θ,

(θ − θ′)

(
E⟨πp∗(θ)|βp∗(θ)⟩

[(
β−βp∗(θ)

βp∗(θ)(1−βp∗(θ))

)
U(β)

]
− E⟨πp∗(θ′)|βp∗(θ′)⟩

[(
β−βp∗(θ′)

βp∗(θ′)(1−βp∗(θ′))

)
U(β)

])
≥ 0.

Hence, D must satisfy (M-P).
(iii): We begin by proving a claim stronger than (iii).

Lemma 7. Let D = {πp}p∈P ∪ {π0} be implementable; let {ak}K
0 be as in Corollary

2, and P = {0, . . . , K}. For all k ∈ P , there exists a menu Dk = {πk
p}p∈P ∪ {π0}

such that E⟨πk
p|βp⟩[W(β)] ≥ E⟨πp|βp⟩[W(β)] for each p ∈ P that satisfies (M-P); satisfies

(ECθ-P) for each θ ≤ ak; and satisfies (ICθ-P) for θ > ak.

Proof. We proceed by induction.

30



First observe that for any menu D′ = {π′
p}p∈P ∪ {π0} and any θ, θ′ ∈ Θk for

some k ∈ P ,

V(θ, θ|D′) = E⟨π′
k|βk⟩

[(
θ

βk
β +

1 − θ

1 − βk
(1 − β)

)
U(β)

]
− C(π′

k)

= V(θ, θ′|D′) (8)

= V(θ′, θ′|D′) + (θ − θ′)E⟨π′
k|βk⟩

[(
β − βk

βk(1 − βk)

)
U(β)

]
. (9)

Initial step (k = 1): Since D is implementable, by (ii), it must satisfy (M-P). Then
if D satisfies (ECθ-P) for all θ ∈ Θ1 then we are done by setting D1 = D. Suppose
that D does not satisfy (ECθ-P) for some θ ∈ Θ1. Then by (9), D does not satisfy
(ECθ-P) for θ = θ0. Since D is implementable, it must satisfy (IRθ-P) for θ = θ0.
Then we must have E⟨π1|β1⟩

[(
θ0
β1

β + 1−θ0
1−β1

(1 − β)
)

U(β)
]
− C(π1) > 0.

Then by Lemma 10, there exists an experiment π′ such that

E⟨π′|β1⟩

[(
θ0

β1
β +

1 − θ0

1 − β1
(1 − β)

)
U(β)

]
− C(π′) = 0 (10)

E⟨π′|β1⟩

[(
β − β1

β1(1 − β1)

)
U(β)

]
= E⟨π1|β1⟩

[(
β − β1

β1(1 − β1)

)
U(β)

]
; (11)

E⟨π′|β1⟩[W(β)] ≥ E⟨π1|β1⟩[W(β)]. (12)

Now construct D1 = {π1
p} ∪ {π0} by letting π1

1 = π′, and π1
p = πp for all p ̸=

p∗(θn). It follows from (12) that E⟨π1
p|βp⟩[W(β)] ≥ E⟨πp|βp⟩[W(β)] for each p ∈ P .

Moreover, by (11) and since D satisfies (M-P), D1 satisfies (M-P). By (10) and (9),
D1 satisfies (EC-P) for all θ ≤ a1.

Then by (9) and since (13) is strict, V(θ′, θ′|D1) < V(θ′, θ′|D) for all θ′ ∈ Θ1.
Hence, from (7) and (11), V(θ, θ′|D1) < V(θ, θ′|D) for all θ′ ∈ Θ1 and θ > a1. Then
since V(θ, θ′|D1) = V(θ, θ′|D) for all θ, θ′ /∈ Θ1, D1 satisfies (ICθ-P) for all θ > a1.

Induction step: Suppose that k > 1, and that Dk−1 = {πk−1
p }p∈P ∪ {π0} satisfies

(M-P); satisfies (ECθ-P) for θ ≤ ak; satisfies (ICθ-P) for θ > ak; and E⟨πk−1
p |βp⟩[W(β)] ≥

E⟨πp|βp⟩[W(β)] for each p ∈ P . If Dk−1 satisfies (ECθ-P) for each θ ∈ Θk then we are
done by setting Dk = Dk−1. Suppose that Dk−1 does not satisfy (ECθ-P) for some
θ ∈ Θk. Then by (9), Dk−1 does not satisfy (ECθ-P) for θ = θn, where θn = min Θk.
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Since Dk−1 satisfies (ICθ-P) for all θ ∈ Θk, we must have

V(θn, θn|Dk−1) ≥ V(θn, θn−1|Dk−1)

⇔ E⟨πk−1
k |βp∗(θn)⟩

[(
θn
βk

β + 1−θn
1−βk

(1 − β)
)

U(β)
]
− C(πk−1

k )

≥ E⟨πk−1
k−1 |βk−1⟩

[(
θn

βk−1
β + 1−θn

1−βk−1
(1 − β)

)
U(β)

]
− C(πk−1

k−1) (13)

= V(θn−1, θn−1|Dk−1) + (θn − θn−1)E⟨πk−1
k−1 |βk−1⟩

[(
β−βk−1

βk−1(1−βk−1)

)
U(β)

]
=

n−1

∑
i=0

(θi+1 − θi)E⟨πk−1
p∗(θi)

|βp∗(θi)
⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]
.

Then since Dk−1 does not satisfy (ECθ-P) for θ = θn, these inequalities must be
strict. Then by Lemma 10, there exists an experiment π′ such that

E⟨π′|βk⟩

[(
θn
βk

β + 1−θn
1−βk

(1 − β)
)

U(β)
]
− C(π′)

=
n−1

∑
i=0

(θi+1 − θi)E⟨πn−1
p∗(θi)

|βp∗(θi)
⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]
; (14)

E⟨π′|βp∗(θn)⟩

[(
β−βp∗(θn)

βp∗(θn)(1−βp∗(θn))

)
U(β)

]
= E⟨πn−1

p∗(θn)
|βp∗(θn)⟩

[(
β−βp∗(θn)

βp∗(θn)(1−βp∗(θn))

)
U(β)

]
;

(15)

E⟨π′|βp∗(θn)⟩[W(β)] ≥ E⟨πn−1
p∗(θn)

|βp∗(θn)⟩
[W(β)] ≥ E⟨πp∗(θn)|βp∗(θn)⟩[W(β)]. (16)

Now construct Dk = {πk
p} ∪ {π0} by letting πk

p∗(θn)
= π′, and πk

p = πk−1
p for all

p ̸= p∗(θn). It follows from (16) and the induction hypothesis that E⟨πk−1
p |βp⟩[W(β)] ≥

E⟨πp|βp⟩[W(β)] for each p ∈ P . Moreover, by (15) and the induction hypothesis, Dk

satisfies (M-P). By (14) and (9), Dk satisfies (EC-P) for all θ ∈ Θk, so by the induc-
tion hypothesis, Dk satisfies (EC-P) for all θ ≤ ak.

Then by (9) and since (13) is strict, V(θ′, θ′|Dk) < V(θ′, θ′|Dk−1) for all θ′ ∈ Θk.
Hence, from (7) and (15), V(θ, θ′|Dk) < V(θ, θ′|Dk−1) for all θ′ ∈ Θk and θ > ak.
Then since V(θ, θ′|Dk) = V(θ, θ′|Dk−1) for all θ, θ′ /∈ Θk, Dk satisfies (ICθ-P) for all
θ > ak.

The lemma follows by induction.

By Lemma 7, there exists a menu D̂ = {π̂p}p∈P ∪ {π0} that satisfies (EC-P) and
(M-P) such that E⟨π̂p|βp⟩[W(β)] ≥ E⟨πp|βp⟩[W(β)] for each p ∈ P . Then by (i), D̂ is
implementable. The claim (iii) follows.
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Proof of Proposition 1 (Implementable Menus) Follows immediately from Lemma
6. □

Lemma 8. Let θ ∈ Θ and suppose that π is binary. Then

i. ⟨π|α⟩([b, 1]) =

{
αη(π) + π(s|0), π(s|1)α

η(π)α+π(s|0) ≥ b;

0, otherwise.

ii. E⟨π|α⟩

[(
θ
α β + 1−θ

1−α (1 − β)
)

U(β)
]
=

{
(θη(π) + πp(s|0))u − C(π), π(s|1)α

η(π)α+π(s|0) ≥ b;

−C(π), otherwise.
.

iii. If E⟨π|α⟩

[(
θ
α β + 1−θ

1−α (1 − β)
)

U(β)
]
≥ 0 and π ̸∼B π0, then supp⟨π|α⟩ ∩ [b, 1] ={

π(s|1)α
αη(π)+π(s|0)

}
;

iv. E⟨πp|βp⟩

[(
β−βp

βp(1−βp)

)
U(β)

]
=

{
η(πp), if π(s|1)α

π(s|1)α+π(s|0)(1−α)
≥ b;

0, otherwise.
.

Proof. (i) follows immediately from Lemma 1 and by Bayes’ rule. (ii) then follows
from (i). (iii) follows from (ii) since C(π) > 0 for all π ̸∼B π0 and by Bayes’ rule.
Finally, when π(s|1)α

η(π)α+π(s|0) ≥ b, we have

E⟨π|α⟩

[(
β−α

α(1−α)

)
U(β)

]
= (αη(π) + π(s|0))

 π(s|1)α
αη(π)+π(s|0) − α

α(1 − α)

 u

=

(
π(s|1)− αη(π)− π(s|0)

1 − α

)
= η(π),

as desired.

Proof of Proposition 2 (Youden’s Index and Implementation) Let D = {πθ}θ∈Θ ∪
{π0} be a binary screening menu that is individually rational. Then each πθ is
binary and satisfies (IRθ). Claims (i) and (ii) thus follow immediately from Lemma
8 (iii) and (iv). □

Proof of Theorem 1 (Screening Dominates Pooling) Let D = {πp}p∈P ∪ {π0} be
an implementable pooling menu. By Lemmas 3 and 6(iii), it is without loss to let D
be binary and satisfy (EC-P). By Corollary 2, there exist {ak}K

0 such that ak > ak−1

for each k, and for each p ∈ P , Θp = (ak−1, ak] ∩ Θ for some k. Hence, it is without
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loss of generality to let P = {1, . . . , K} and Θk = (ak−1, ak] ∩ Θ for each k ∈ P ; we
write Eσ[θ|θ ∈ Θk] = βk ∈ Θk.
Step 0: To begin, note that since D is implementable, for each k ∈ P and θ ∈ Θk,
(IRθ-P) holds for πp = πk and βp = βk, and so by Lemma 8 (iii), either πk ∼B π0,
or πk(s|1)βk

η(πk)βk+πk(s|0)
≥ b and by Lemma 8 (ii) (η(πk)θ + πk(s|0))u − C(πk) ≥ 0.

Step I: First, we construct a binary screening menu D′ = {πθ}θ∈Θ ∪ {π0} from D
which is individually rational and leaves the principal weakly better off. For each
k ∈ P and θ ∈ Θk, if πk(s|1)θ

η(πk)θ+πk(s|0)
≥ b or πk ∼B π0, set πθ = πk. Otherwise, set

πθ = πk−1 (with the convention that πk−1 ∼B π0 when k = 1).
Fix k ∈ P and θ ∈ Θk. If πθ = πk, then either πk ∼B π0, or by Step 0

and Lemma 8(ii), E⟨πk|θ⟩[U(β) − G(β|θ)] = (η(πk)θ + πk(s|0))u − C(πk) ≥ 0.
If πθ = πk−1, then by Step 0, either πk−1 = π0 or (since θ > ak−1 ≥ βk−1)

πk−1(s|1)θ
πk−1(s|1)θ+πk−1(s|0)(1−θ)

≥ πk−1(s|1)βk−1
πk−1(s|1)βk−1+πk−1(s|0)(1−βk−1)

≥ b. Then by Lemma 8(ii)
and Step 0, for each θk−1 ∈ Θk−1, E⟨πk−1|θ⟩[U(β)−G(β|θ)] = (η(πk−1)θ +πk−1(s|0))u−
C(πk−1) ≥ (η(πk−1)θk−1 + πk−1(s|0))u − C(πk−1) ≥ 0. In all cases, πθ satisfies
(IRθ).

Now for each k ∈ P and θ ∈ Θk such that πθ ̸= πk, either πk(s|1)θ
πk(s|1)θ+πk(s|0)(1−θ)

<

b or πk ∼B π0. In either case, E⟨πk|θ⟩[W(β)] = 0. Hence, ∑θ∈Θ E⟨πθ |θ⟩[W(β)] ≥
∑K

k=1 ∑θ∈Θk
E⟨πk|θ⟩[W(β)] ≥ ∑K

k=1 E⟨πθ |βk⟩[W(β)], where the last inequality follows
from Blackwell’s theorem.

Finally, since D is implementable, by Lemma 6(iii), it satisfies (M-P). Then by
Lemma 8(iv), η(πk) ≥ η(πk−1) for each k ∈ P . Fix k ∈ P and θ ∈ Θk. If
πθ = πk, then by construction, η(πθ) ≥ η(πθ′) for all θ ≥ θ′. If πθ = πk−1, then

πk(s|1)θ
η(πk)θ+πk(s|0)

< b; then for all θ′ ∈ Θk with θ′ < θ, πk(s|1)θ′
η(πk)θ′+πk(s|0)

< b, and so πθ′ =

πk−1 as well. Then we once again have η(πθ) ≥ η(πθ′) for all θ ≥ θ′. Then by
Proposition 2(i), D′ satisfies (M-P).
Step II: Now, we construct a binary screening menu D̂ = {π̂θ}θ∈Θ} ∪ {π0} from D′

which is individually rational and incentive compatible, and which the principal
weakly prefers to D′. First, for each θ ∈ Θ with πθ ∼B π0, set π̂θ = πθ. For each
such θ, since D′ satisfies (M-P) and by Lemma 8(iv), we have 0 = η(πθi), and thus
πθi ∼B π0, for all θi ≤ θ; it follows that E⟨π̂θ |θ⟩[U(β)]− C(π̂θ) = 0 = ∑θi<θ(θi+1 −
θi)η(π̂θi).

Now define the mapping k∗ : Θ → P such that for each θ ∈ Θ, θ ∈ Θk∗(θ), and

34



fix θ ∈ Θ such that πk∗(θ) ̸= π0. Since D satisfies (EC-P),

(θη(πk∗(θ)) + πk∗(θ)(s|0))u − C(πk∗(θ)) = ∑
θi<θ

(θi+1 − θi)η(πk∗(θi)
)u,

by Step 0 and Lemma 8((ii)-(iii)). Since D is implementable, by Lemma 6(ii), it
satisfies (M-P); then by Lemma 8(iv), η(πk) ≥ η(πk−1) for each k > 0. Then by
construction of D′, η(πθi) ≤ η(πk∗(θi)

) for each θi ∈ Θ. Then we have

(θη(πk∗(θ)) + πk∗(θ)(s|0))u − C(πk) ≥ ∑
θi<θ

(θi+1 − θi)η(πθi)u. (17)

Now fix k ∈ P and θ ∈ Θk with πθ ̸∼B π0. If πθ = πk−1, then by Step 1, for all
θi < θ with θi ∈ Θk, πθi = πk−1 as well. Then applying (17) for θ′ ∈ Θk−1 yields

(θη(πk−1) + πk−1(s|0))u − C(πk) ≥ (θ − θ′)η(πk−1) + ∑
θi<θ′

(θi+1 − θi)η(πθi)u

⇒ E⟨πθ |θ⟩[U(β)]− C(πθ) = (θη(πk−1) + πk−1(s|0))u − C(πk−1) ≥ ∑
θi<θ

(θi+1 − θi)η(πθi)u,

where the equality follows from Step 1. Alternatively, if πθ = πk, then by Lemma
8(ii) and (17), E⟨πθ |θ⟩[U(β)−G(β|θ)] = (η(πk)θ +πk(s|0))u−C(πk) ≥ ∑θi<θ(θi+1 −
θi)η(πθi)u. In either case, by Lemma 10, we can choose a binary π̂θ such that
E⟨π̂θ |θ⟩[U(β)]−C(π̂θ) = ∑θi<θ(θi+1 − θi)η(πθi)u; η(π̂θ) = η(πθ) (by Lemma 8(iv));
and E⟨π̂θ |θ⟩[W(β)] ≥ E⟨πθ |θ⟩[W(β)].

Then since η(π̂θ) = η(πθ) for each θ ∈ Θ, it follows from Lemma 8 that
D̂ satisfies (ECθ), and (since D′ satisfies (M(θ, θ′))) satisfies (M(θ, θ′)). Then by
Proposition 1, D̂ is implementable. Moreover, we have ∑θ∈Θ E⟨π̂θ |θ⟩[W(β)] ≥
∑θ∈Θ E⟨πθ |θ⟩[W(β)] ≥ ∑K

k=1 E⟨πθ |βk⟩[W(β)], as desired. □

Lemma 9 (Uniqueness in (COPT’)). If (COPT’) has a solution, it has a binary solution,
and this solution is unique (up to Blackwell equivalence).

Proof. Observe that D = {π∗
θ}θ∈Θ ∪ {π0} solves (COPT’) if and only if π∗

θn
solves

(TBTθn) for each θn ∈ Θ. Since the objective in (TBTθn), S(β, θn)− R(β, θn), satisfies
the hypotheses of Lemma 11, if the problem maxτ Eτ[S(β, θn)−R(β, θn)] s.t. Eτβ =

θn has a solution π∗
n, it is unique, and | supp π∗

n| ≤ 2. Then the solution to (TBTθn)
is unique up to Blackwell equivalence, and since π∗

n = ⟨π|θn⟩ for some binary π,
(TBTθn) has a binary solution. The claim follows.
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Proof of Theorem 2 (Existence and Uniqueness) This argument follows closely
with the proof of Theorem 3 in Doval and Skreta (2023). Let V denote the value of
(COPT). A priori, we do not know the value of (COPT) is attained, so

V = sup
{πθ}θ∈Θ

∑
θ∈Θ

E⟨πθ|θ⟩
[W(β)]σ(θ) s.t. (EC), (M).

Denote by f : [0, 1]Θ → R the function {βθ}θ∈Θ 7→ ∑N
n=0 W(βθn)σ(θn). Define a

family of functions {ḡn}N
n=0 by ḡn : [0, 1]Θ → R ∪ {−∞} where

{βθ}θ∈Θ 7→ U(βθn)− G(βθn |θn)− ∑
i<n

(θi+1 − θi)

(
βθi − θi

θi(1 − θi)

)
U(βθi) ∀θ ∈ Θ.

Define a family of functions {m̄n}N
n=0 by m̄ : [0, 1]Θ → R where

{βθ}θ∈Θ 7→
(

βθn − θn

θn(1 − θn)

)
U(βθn).

For a product distribution τ ∈ Πθ∈Θ∆([0, 1]), the constraint (ECθ) is satisfied if
and only if Eτ ḡn = 0 for all n ∈ {0, ..., N}. Additionally, monotonicity is satisfied
if and only if Eτm̄n is non-decreasing in n. We’ll decompose an element y ∈ R ×
RΘ × RΘ as y = (yp, (yn)N

n=0, (yMn )N
n=0). Let

J = {y ∈ R × RΘ × RΘ : (Θ, y) ∈ conv(Gr( f , {ḡn}N
n=0, {m̄n}N

n=0))}.

That is, J is the set of possible point values of the objective and constraints.30 The
set of pointwise feasible vectors in J is JF = {y ∈ J : yn = 0 ∀n and yMn ≥ yMn′ ∀n ≥
n′}. The condition yn = 0 corresponds to the envelope condition holding for type
θn and yMn ≥ yMn′ ∀n′ ≤ n corresponds to the monotonicity condition for type θn.

To show the equivalence of (COPT) and (COPT’), we first define two distinct
problems. We call the problem sup{yp : y ∈ JF} the auxiliary primal, and given
two families of constants {λn}N

n=0 and {δn}N
n=1, we call the problem

sup
y∈J

{
yp +

N

∑
n=0

λnyn +
N

∑
n=1

δn(yMn − yMn−1)

}

the auxiliary dual. Our argument establishes the following chain of equivalence

30See Rubin and Wesler (1958).
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between problems:

Primal (COPT) ⇐⇒ Auxiliary Primal ⇐⇒ Auxiliary Dual ⇐⇒ Dual (COPT’)

Steps I-IV show that, for some {λ∗
n}N

n=0 and {δ∗n}N
n=1, the values of these prob-

lems coincide. Step V shows that a product distribution τ ∈ Πθ∈Θ∆([0, 1]) solves
(COPT) if and only if it solves (COPT’). Since the solution to (COPT’) exists, is
unique, and is binary by Lemma 9, the solution to (COPT) also exists and is unique.

Step I (Show ∃y, y′ ∈ JF with yp ̸= y′p): We proceed constructively. First, observe
that y = (0, ...., 0) ∈ JF, since y is associated with the menu D = {πθ}θ∈Θ ∪ {π0}
where each πθ = π0. Next, consider the menu D′ = {π′

θ}θ∈Θ ∪ {π0} such that
π′

θn
= π0 for all n < N, and π′

θN
̸= π0. Let π′

θN
satisfy the envelope condition

for type θN and let supp⟨π′
θN
|θN⟩} = {β, β} where β < b < β.31 Since y′p =

E⟨π′
θN

|θN⟩[W(β)] > 0, then y′p ̸= yp.

Step II (Show V = sup{yp : y ∈ JF}): We can show that the value of the problem
(COPT) coincides with the value of sup{yp : y ∈ JF}. First, let ϵ > 0. Then ∃yϵ ∈ J
such that (i) yϵ

p ≥ sup{yp : y ∈ JF} − ϵ, (ii) yϵ
n = 0 for all n, and (iii) yϵ,M

n ≥ yϵ,M
n′

for all n ≥ n′. So there exists a set {(rm, {βθ,m}θ∈Θ)}M
m=1 such that r = (rm)M

m=1 ∈
∆(
⋃M

m=1{βθ,m}θ∈Θ), and Erβθn = θn for all n, and

yϵ
p =

M

∑
m=1

rm f ({βθ,m}θ∈Θ) ≥ sup{y1 : y ∈ JF} − ϵ; yϵ
n =

M

∑
m=1

rm ḡn({βθ,m}θ∈Θ) = 0 ∀n;

yϵ,M
n =

M

∑
m=1

rmm̄n({βθ,m}θ∈Θ) is non-decreasing in n,

so r is feasible in (COPT). So V ≥ sup{yp : y ∈ JF} − ϵ. Since this holds for all
ϵ > 0, V ≥ sup{yp : y ∈ JF}.

Next, we show that sup{yp : y ∈ JF} ≥ V. By Proposition 3(ii) in Yoder
(2023) the solution to the auxiliary primal induces finitely many posteriors. That
is, for ϵ > 0, there exists a set {(rm, {βθ,m}θ∈Θ)}M

m=1 such that r = (rm)M
m=1 ∈

31Such an experiment exists, by assumption that ∃π such that E⟨π|θN⟩[U(β, θN)]−C(π) > 0, then
applying Lemma 10.
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∆(
⋃M

m=1{βθ,m}θ∈Θ), and Erβθn = θn for all n, and

M

∑
m=1

rm f ({βθ,m}θ∈Θ) ≥ V − ϵ;
M

∑
m=1

rm ḡn({βθ,m}θ∈Θ) = 0 ∀n;

M

∑
m=1

rmm̄n({βθ,m}) is non-decreasing in n.

Then, since (Θ, ∑M
m=1 rm j({βθ,m}θ∈Θ)) ∈ conv(Gr j) where j : [0, 1]Θ → R ×

RΘ × RΘ is defined by j = ( f , {ḡn}N
n=0, {m̄n}N

n=0) and ∑M
m=1 rm j({βθ,m}θ∈Θ) ∈ JF,

then sup{yp : y ∈ JF} ≥ V − ϵ; since this holds for all ϵ > 0, sup{yp : y ∈ JF} ≥ V.
It follows that sup{yp : y ∈ JF} = V.

Step III (Show (COPT) satisfies Slater’s Condition): We show that there exists a point
y ∈ JF such that y ∈ ri(J), as in Assumption S of Doval and Skreta (2023). To
show this, it is sufficient to show that there exists a point y ∈ projR×RΘ JF such
that y ∈ ri(projR×RΘ J), since ri(projR×RΘ J) = projR×RΘ ri(J)32 and projR×RΘ JF ∩
projR×RΘ ri(J) ̸= ∅ implies JF ∩ ri(J) ̸= ∅.

Suppose for sake of contradiction that projR×RΘ JF ∩ ri(projR×RΘ J) = ∅. By
definition, JF and J are convex; then so are projR×RΘ JF and projR×RΘ J, and hence
ri(projR×RΘ J). Then by the separating hyperplane theorem, there exists a nonzero
r = (rp, {rn}N

n=0) ∈ R × RΘ such that r · y ≥ r · x for all y ∈ projR×RΘ JF and x ∈
ri(projR×RΘ J). Then ri(projR×RΘ J) ⊆ {x ∈ R × RΘ : r · x ≤ infy∈proj

R×RΘ JF r · y};
since the latter set is a closed half-space, {x ∈ R × RΘ : r · x ≤ infy∈proj

R×RΘ JF r ·
y} ⊇ cl(projR×RΘ J) ⊇ projR×RΘ J. Consequently,

projR×RΘ JF ⊆ arg max
y∈J

⟨r, projR×RΘ y⟩. (18)

Observe that, by Step I, ∃ŷ, ŷ′ ∈ JF such that ŷp ̸= ŷ′p. But since ⟨r, projR×RΘ ŷ⟩ =
⟨r, projR×RΘ ŷ′⟩, rpŷp = rpŷ′p. Since ŷp ̸= ŷ′p, rp = 0.

Consider in particular a point y ∈ JF with yp < sup{yp : y ∈ JF}33 and as-
sociate with this point a Bayes plausible distribution τ ∈ Πθ∈Θ∆([0, 1]) with y =

(Eτ f , ΠN
n=0{0}, {Eτm̄θ}θ∈Θ). But by (18), we have projR×RΘ y ∈ arg maxy∈J ∑N

n=0 rnyn.
Since r is nonzero and rp = 0, we must have rn ̸= 0 for at least one n ∈

{0, . . . , N}. We’ll now construct a Bayes plausible product distribution τ′ ∈ Πθ∈Θ∆([0, 1])

32See, e.g., Proposition 2.1.12 of Hiriart-Urruty and Lemaréchal (2004).
33Which exists by Step I.
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such that the associated y′ = (Eτ′ f , {Eτ′ ḡn}N
n=0, {Eτ′m̄n}N

n=0) where projR×RΘ y′ ̸=
projR×RΘ y yields a higher value in the above program,inductively as follows: For
each n ∈ {0, . . . , N}, given projθ<θn

τ′, choose proθn
τ′ such that the envelope con-

dition (ECθ) for θ = θn holds with the inequality ”>” if rn > 0 and ”<” if rn < 0,
and choose projθn

τ′ = ⟨π0|θn⟩ if rn = 0. Then ∑N
n=0 rny′n > ∑N

n=0 rnyn, contradict-
ing projR×RΘ y ∈ arg maxy∈J ∑N

n=0 rnyn.

Step IV (Validate the Lagrangian Approach): The value V = sup{yp : y ∈ JF} coin-
cides with the value of

sup
y∈J

yp s.t.

 yn = 0, n ∈ {0, ..., N}

yMn ≥ yMn′ ∀n ≥ n′
.

Since (COPT) satisfies Slater’s condition34 and each constraint function is linear,
by Rockafellar (1970) Corollary 28.2.2 and there exist weakly positive35 Lagrange
multipliers {λ∗

n}N
n=0 and {δ∗n}N

n=1 such that the value of the above program is equal
to the maximized value (over J) of

L(y, {λ∗
n}N

n=0, {δ∗n}N
n=1) = yp +

N

∑
n=0

λ∗
nyn +

N

∑
n=1

δ∗n(y
M
n − yMn−1) (19)

It follows that

V = sup{yp : y ∈ JF} = sup
y∈J

[yp +
N

∑
n=0

λ∗
nyn +

N

∑
n=1

δ∗n(y
M
n − yMn−1)]

= sup
τ∈Πθ∈Θ∆([0,1])

{
Eτ f +

N

∑
n=0

λ∗
nEτ ḡn +

N

∑
n=1

δ∗n(Eτm̄n − Eτm̄n−1) s.t. Eτβθn = θn ∀n

}

= sup
τ∈Πθ∈Θ∆([0,1])

{
Eτ

[
f +

N

∑
n=0

λ∗
n ḡn +

N

∑
n=1

δ∗n(m̄n − m̄n−1)

]
s.t. Eτβθn = θn ∀n

}

Step V (Coincidence of Solutions): Note first that τ is a solution to (COPT) if and only
if yτ = (Eτ f , {Eτ ḡn}N

n=0, {Eτm̄n}N
n=0}) solves the auxiliary primal. Additionally,

τ solves (COPT’) if and only if yτ solves the auxiliary dual. All that remains is to
show that y solves the auxiliary dual if and only if y solves the auxiliary primal.
Since there is a unique solution to (COPT’) by Lemma 9 and this solution is binary,

34There is a feasible point in the relative interior of a convex domain.
35By Lemma 14.
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the auxiliary dual has a unique solution. By Rockafellar (1970) Corollary 28.1.1, the
unique solution y to the auxiliary dual uniquely solves the auxiliary primal. Thus
τ solves (COPT) if and only if τ solves (COPT’). The complementary slackness
condition, (CS), follows from Rockafellar (1970) Theorem 28.3(a). Non-negativity
of the Lagrange multipliers follows from Lemma 14.36 □

Proof of Proposition 3 (Efficiency and the Social Planner’s Problem) (If) Suppose
that ⟨π|θ⟩ solves (SPPθ). We consider three cases.

If λa > 0 and λp > 0, then there can be no π′ ̸= π with E⟨π′|θ⟩[W(β)] ≥
E⟨π|θ⟩[W(β)] and E⟨π′|θ⟩[U(β)−G(β|θ)] ≥ E⟨π|θ⟩[U(β)−G(β|θ)] with one inequal-
ity strict; if there were, ⟨π′|θ⟩ would achieve a higher value in (SPPθ). Thus, π is
Pareto efficient for type θ.

If λa = 0, then (SPPθ) is equivalent to

⟨π|θ⟩ ∈ arg max
τ∈∆(∆(Ω))

{Eτ [W(β)] s.t. Eτβ = θ} . (20)

Since W is convex, its concavification can be written W(β) = βw1. Hence, by
Lemma 3 in Yoder (2022), the solution to (20) is the unique Bayes-plausible distri-
bution with support {0, 1}, which is induced by the fully informative experiment
π∞. It follows that there can be no π′ ̸∼B π∞ with E⟨π′|θ⟩[W(β)] ≥ E⟨π∞|θ⟩[W(β)],
and so π is Pareto efficient for type θ.

If λp = 0, then (SPPθ) is equivalent to

⟨π|θ⟩ ∈ arg max
τ∈∆(∆(Ω))

{Eτ [U(β)− G(β|θ)] s.t. Eτβ = θ} . (21)

By Lemma 11, the solution to (21) is unique. It follows that there can be no π′

with E⟨π′|θ⟩[U(β)− G(β|θ)] ≥ E⟨π|θ⟩[U(β)− G(β|θ)], and so π is Pareto efficient
for type θ.

(Only if) Suppose that π is Pareto efficient for type θ. If E⟨π|θ⟩[G(β|θ)] = −∞
then (20) must hold, and so ⟨π|θ⟩ solves (SPPθ) for λa = 0 and λp > 0. Suppose
instead that E⟨π|θ⟩[G(β|θ)] = y∗ ∈ R, and let E⟨π|θ⟩[W(β)] = x∗.

Let

Zθ = {(x, y) ∈ R2 | ∃τ ∈ ∆(∆(Ω)) : x ≤ Eτ [W(β)] , Eτ [U(β)− G(β|θ)] ≥ y, Eτβ = θ}.

36Observe that by Lemma 10, replacing “=” with ”≥” in (COPT) does not change the set of
solutions.
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Zθ is convex: Let (x, y), (x′, y′) ∈ Zθ and let λ ∈ (0, 1). Then for some τ, τ′ with
Eτβ = Eτ′β = θ,

x ≤ Eτ [W(β)] , y ≤ Eτ [U(β)− G(β|θ)] , x′ ≤ Eτ′ [W(β)] , y′ ≤ Eτ′ [U(β)− G(β|θ)] .

Let τλ = λτ + (1 − λ)τ′. Then Eτλ
β = λEτβ + (1 − λ)Eτ′β = θ. Moreover,

λx + (1 − λ)x′ ≤ λEτ [W(β)] + (1 − λ)Eτ′ [W(β)] = Eτλ
[W(β)] ,

λy + (1 − λ)y′ ≤ λEτ [U(β)− G(β|θ)] + (1 − λ)Eτ′ [U(β)− G(β|θ)] = Eτλ
[U(β)− G(β|θ)] .

Hence (λx + (1 − λ)x′, λy + (1 − λ)y′) ∈ Zθ.
Now (x∗, y∗) ∈ Bd Zθ: If not, then there exists ϵ > 0 such that the ϵ-ball about

(x∗, y∗) is contained in Zθ. But then (x∗ + ϵ/2, y∗ + ϵ/2) ∈ Zθ, a contradiction
since π is Pareto efficient for type θ.

Then by the supporting hyperplane theorem, there exists (λ∗
a , λ∗

p) ∈ R2 \ {0}
such that λ∗

a x∗ + λ∗
py∗ ≥ λ∗

a x + λ∗
py for all (x, y) ∈ Zθ. Since (x, y) ∈ Zθ implies

(x′, y′) ∈ Zθ for all x′ ≤ x, y′ ≤ y, it follows that λ∗
a , λ∗

p ≥ 0.
If λ∗

a > 0, the claim follows immediately. If λ∗
a = 0, then

x∗ = sup{x | x = Eτ [W(β)] for some τ with Eτ [U(β)− G(β|θ)] > −∞ and Eτβ = β0}
= sup{x | x = Eτ [W(β)] for some τ with supp τ ⊆ (0, 1) and Eτβ = β0}
= β0W(1) + (1 − β0)W(0) = max

τ∈∆(∆(Ω))
{Eτ[W(β)] s.t. Eτβ = β0},

where the third equality follows since W is convex and continuous, and since we
have τn →w∗

τ∞, where τ∞ is the fully informative Bayes-plausible distribution
over posteriors and

τn ({β0/n}) = 1 − β0, τn ({1 − (1 − β0)/n}) = β0;

τ∞ ({0}) = 1 − β0, τ∞ ({1}) = β0.

The claim then follows by letting λa = 0 and λp > 0 in (SPPθ). □

Proof of Theorem 3 (Distortion Everywhere Else) Let θ = θn for some n < N.
(ii): Suppose that πθn is binary, is on the Pareto frontier for type θn, and is a

Pareto improvement on π∗
θn

for type θn. Since π∗
θn

satisfies (IRθ) for type θn, and
πθn is a Pareto improvement on π∗

θn
, we must have C(πθn) < ∞.
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Suppose toward a contradiction that πθn(s|1) ≥ π∗
θn
(s|1); then π∗

θn
̸≺B πθn . By

Lemma 18, π∗
θn

̸⪰B πθn , so we must have πθn(s|0) > π∗
θn
(s|0). Let z = max{i ≤ n |

δi = 0 or i = 0}. That is, θz is the largest type less than or equal to θn such that the
monotonicity constraint does not bind. Then by Lemma 5, π∗

θn
= π∗

θz
.

We show that there must be some π′ ∈ Π that is on the Pareto frontier for type
θz for which π′(s|1) ≥ π∗

θn
(s|1), π′(s|0) > π∗

θn
(s|0), and C(π′) < ∞. If πθn is on the

Pareto frontier for type θz, this is immediate by setting π′ = πθn ; suppose not. Then
there is some π ∈ Π that is a Pareto improvement on πθn for type θz; choose π′ to
be such a π that is on the Pareto frontier for type θz, and note that since C(πθn) <

∞, we must have C(π′) < ∞ as well. If π′(s|1) < πθn(s|1), then by Lemma 19,
π′ is also a Pareto improvement on πθn for type θn, a contradiction since πθn is on
the Pareto frontier for type θn. So we must have π′(s|1) ≥ πθn(s|1) ≥ π∗

θn
(s|1). By

Lemma 18, πθn ̸⪰B π′, so π′(s|0) > πθn(s|0) > π∗
θn
(s|0).

Let supp⟨π∗
θn
|θz⟩ = {β∗, β

∗} with β∗ < θz < β
∗
, and supp⟨π′|θz⟩ = {β′, β

′}
with β < θz < β. Since π′(s|1) ≥ π∗

θn
(s|1) and π′(s|0) > π∗

θn
(s|0), π′ and π∗

θn

cannot be Blackwell-ranked. Then one of two cases must hold: (a) β ≤ β∗ and β ≤
β
∗
, with one inequality strict; or (b) β ≥ β∗ and β ≥ β

∗
, with one inequality strict.

Suppose that (b) holds. By Lemma 15, since θz ∈ Θ̃, we must have β
∗
> b.

By Proposition 3, since π′ is on the Pareto frontier for type θz, there exist Pareto
weights λp, λa ≥ 0 such that ⟨π′|θz⟩ solves (SPPθ) for θ = θz. Since C(π′) < ∞, π′

is not fully informative: π′ ̸∼B π∞. Then by Corollary 1, either equation (2) or (3)
from Section 4.2 holds for θ = θz. Moreover, since π∗

θn
solves (TBTθn) for θ = θz,

(6) holds (with θn replaced by θz) at (β∗, β
∗
). Then we have

R(b, θz)/λ∗
z = u − G(β

∗|θz)− G′(β
∗|θz) + G(β∗|θz) + G′(β∗|θz)(b − β∗)

< u − G(β|θz)− G′(β|θz) + G(β|θz) + G′(β|θz)(b − β) = 0, (22)

but this contradicts Lemma 17. So it must be the case that (a) β ≤ β∗ and β ≤ β
∗
,

with one inequality strict. Then since Bayesian updating is multiplicative in likeli-
hood ratios, and β ≤ β

∗
, we must have π∗

θn
(s|1)/π∗

θn
(s|0) ≥ π′(s|1)/π′(s|0). Since

π′(s|0) > π∗
θn
(s|0), we have π′(s|0) < π∗

θn
(s|0), and hence π∗

θn
(s|1) > π′(s|1), a

contradiction.
(iii): Follows immediately from the assumption that there exists π ∈ Π such

that E⟨π|θn⟩[U(β)]− C(π) > 0.
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(i): We consider two cases.
Case 1: δ∗n = 0, or n = 0. Suppose toward a contradiction that π∗

θn
is Pareto

efficient for type θn. By Proposition 3, there exist λp, λa ≥ 0, not identically zero,
such that ⟨π∗

θn
|θn⟩ solves (SPPθ).

If λa = 0, then ⟨π∗
θn
|θn⟩ solves (20). Since W is convex, its concavification can

be written W(β) = βw1. Hence, by Lemma 3 in Yoder (2022), the unique solu-
tion to (20) is the unique Bayes-plausible distribution with support {0, 1}. Then
π∗

θn
is Blackwell-equivalent to the fully informative binary experiment π∞ with

π∞(s|1) = π∞(s|0) = 1. But E⟨π∞|θn⟩[S(β, θn) − R(β, θn)] = −∞ < S(θn, θn) −
R(θn, θn), so π∗

θn
does not solve (TBTθn). Hence, D∗ does not solve (COPT), contra-

dicting Theorem 2.
If λa > 0, then by Lemma 11, we have supp π∗

θn
= {β∗, β

∗} for β∗, β
∗

that
solve (2). And since π∗

θ solves (TBTθn), Lemma 11 implies that β∗, β
∗

also solve
(6). But by Lemma 17, R(b, θn)/λ∗

n > 0; then β∗, β
∗

cannot solve both (6) and (2), a
contradiction.

Case 2: n > 0 and δ∗n ̸= 0. Let z = max{i ≤ n | δi = 0 or i = 0}. That is, θz

is the largest type below θn such that the monotonicity constraint does not bind.
Then by Lemma 5, π∗

θn
= π∗

θz
.

By Case 1, π∗
θz

is inefficient for type θz. Then there exists πθz on the Pareto
frontier for type θz which Pareto dominates π∗

θz
for type θz, and by (ii), πθz(s|1) <

π∗
θz
(s|1). Then by Lemma 19, πθz Pareto dominates π∗

θz
= π∗

θn
for type θn as well. □
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Online Appendix

Technical Lemmas

Lemma 10 (Continuity Lemma). If α < b, ⟨π|α⟩ ∈ ∆([0, 1]), m : [0, 1] → R is a
linear function, and E⟨π|α⟩[m(β)U(β)− G(β|α)] > x for some x ∈ R+, then ∃π′ ∈ Π
such that

i. π′ is binary.

ii. E⟨π′|α⟩[W(β)] > E⟨π|α⟩[W(β)].

iii. E⟨π′|α⟩[m(β)U(β)− G(β|α)] = x.

iv. E⟨π|α⟩

[(
β−α

α(1−α)

)
U(β)

]
= E⟨π′|α⟩

[(
β−α

α(1−α)

)
U(β)

]
.

Proof. Let β
π
= E⟨π|α⟩[β|β ≥ b] and βπ = E⟨π|α⟩[β|β < b]. Let p = ⟨π|α⟩([b, 1]) be

the probability of approval for ⟨π|α⟩; by Bayes’ rule, pβ
π
+ (1 − p)βπ = α. Then

any binary experiment π̃ with supp⟨π̃|α⟩ = {β, β} such that β < α < b ≤ β which
satisfies (

β − α

α(1 − α)

)(
α − β

β − β

)
=

(
β

π − α

α(1 − α)

)
p (23)

(and in particular, the binary experiment with supp⟨π̃|α⟩ = {βπ, β
π}) will satisfy

E⟨π|α⟩

[(
β−α

α(1−α)

)
U(β)

]
= E⟨π̃|α⟩

[(
β−α

α(1−α)

)
U(β)

]
. For such experiments, β can be

defined implicitly as a function of β, as follows:

β(β) =
(β − α)α − (β

π p − αp)β

β − α + αp − β
π p

.

This function is nondecreasing: we have

β′(β) = (α+αp−β
π p)(β−α+αp−β

π p)−((β−α)α−(β
π p−αp)β)

(β−α+αp−β
π p)2 = (αp−β

π p)2

(β−α+αp−β
π p)2 ≥ 0

Moreover,

β(1) =
(1 − α)α − (β

π p − αp)

1 − α + αp − β
π p

<
(1 − α)α − (β

π p − αp)α

1 − α + αp − β
π p

= α.
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Since we must have β(β
π
) = βπ, it follows that β([β

π
, 1]) ⊆ [βπ, α). Now define

f : [β
π

, 1] → R ∪ {−∞} by

f (β) =

(
α − β(β)

β − β(β)

)
(m(β)u − G(β|α))−

(
β − α

β − β(β)

)
G(β(β)|α).

Since limβ→0 G(β|α) = limβ→1 G(β|α) = −∞, we have limβ→1 f (β) = −∞. Since
G(·|α) is strictly convex and m is linear, we have

f (β
π
) =⟨π|α⟩([b, 1])

(
m
(

E⟨π|α⟩[β|β ≥ b]
)

u − G(E⟨π|α⟩[β|β ≥ b]|α)
)

− ⟨π|α⟩([0, b))G(E⟨π|α⟩[β|β < b]|α)

≥⟨π|α⟩([b, 1])
(

E⟨π|α⟩[m(β)|β ≥ b]u − E⟨π|α⟩[G(β|α)|β ≥ b]
)

− ⟨π|α⟩([0, b))E⟨π|α⟩[G(β|α)|β < b]

=E⟨π|α⟩ [m(β)U(β)− G(β|α)] > x.

Since G and β(·) are continuous, so is f . Then by the intermediate value the-

orem, there exists some β
′
> β

π
such that f (β

′
) = x. Then define π′ ∈ Π by

supp⟨π′|α⟩ = {β(β
′
), β

′}, and observe that E⟨π′|α⟩[U(β) − G(β|α)] = f (β
′
) = x;

hence, π′ satisfies (iii) and (since it is binary) (i).
Since (23) holds for (β, β) = (β(β

′
), β

′
), π′ satisfies (iv). Moreover, we must

have

(
E⟨π′|α⟩[β|β ≥ b]− α

)
⟨π′|α⟩([b, 1]) = (β

′ − α)
α − β(β

′
)

β
′ − β(β

′
)
=
(

E⟨π|α⟩[β|β ≥ b]− α
)
⟨π|α⟩([b, 1]);

(24)

and furthermore, since β
′
> β

π
, we must have

⟨π′|α⟩([b, 1]) =
α − β(β

′
)

β
′ − β(β

′
)
< p = ⟨π|α⟩([b, 1]);

⇒ ⟨π′|α⟩([b, 1])(α − b) > ⟨π|α⟩([b, 1])(α − b). (25)
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Now observe that for any experiment π̂, we can write

E⟨π̂|α⟩[W(β)] = ⟨π̂|α⟩([b, 1]) · E⟨π̂|α⟩[W(β)|β ≥ b]

= ⟨π̂|α⟩([b, 1])
(

w0 + (w1 − w0)E⟨π̂|α⟩[β|β ≥ b]
)

= ⟨π̂|α⟩([b, 1])
(
−w0

b

)(
E⟨π̂|α⟩[β|β ≥ b]− b

)
.

Thus, adding (24) and (25) and multiplying both sides by −w0
b > 0 yields

E⟨π′|α⟩[W(β)] = ⟨π′|α⟩([b, 1])
(
−w0

b

)(
E⟨π′|α⟩[β|β ≥ b]− b

)
> ⟨π|α⟩([b, 1])

(
−w0

b

)(
E⟨π|α⟩[β|β ≥ b]− b

)
= E⟨π|α⟩[W(β)],

and so π′ satisfies (ii).

Lemma 11 (A Necessary and Sufficient Tangent Line Condition). Suppose that v :
[0, 1] → R ∪ {−∞} is continuous and strictly concave on [0, b) and on [b, 1], contin-
uously differentiable on (0, b) and (b, 1), that limβ→0 v′(β) = ∞, and limβ→1 v′(β) =

−∞, and that α ∈ (0, b). Then maxτ{Eτv(β) s.t. Eτβ = α} has a solution τ∗, it is
unique, and

i. If there exist β, β with b, α ∈ (β, β) and
v(β)−v(β)

β−β
= v′(β) = v′(β), then supp τ∗ =

{β, β};

ii. If not, and there exists β < α < b with
v(b)−v(β)

b−β = v′(β), then supp τ∗ = {β, b};

iii. If the conditions in both (i) and (ii) fail, then supp τ∗ = {α}.

Proof. We begin by showing that Lemma 11 holds under the additional assump-
tion that v is upper semicontinuous (or equivalently, limβ↑b v(β) ≤ v(b)). Since so-
lutions to persuasion problems are preserved under upper semicontinuous hulls
(Lemma S.5 in Yoder (2022)), the uniqueness of the solution to the upper semicon-
tinuous hull problem guarantees that it is also the unique solution to the (possibly
not upper semicontinuous) original problem. We then show existence by showing
that if v is not upper semicontinuous, then the solution to the u.s.c. hull problem
must be case (i) or (iii), in which case it is also a solution to the original problem.
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To prove Lemma 11 under upper semicontinuity, we first show existence, and
then show that the conditions in (i),(ii), and (iii) imply that τ∗ has support {β, β},
{β, b}, and {α}, respectively. Then, we show that in each case, τ∗ is the unique
solution to maxτ{Eτv(β) s.t. Eτβ = α}.

Existence of τ∗ under upper semicontinuity. Follows from, e.g., Proposition 3
in Yoder (2023).

Support of τ∗. (i): Suppose that condition (i) holds, and v is upper semicontin-

uous. Then by strict concavity, v(β) +
v(β)−v(β)

β−β
(β − β) = v(β) + v′(β)(β − β) >

v(β) for all β ∈ [0, b), and v(β) +
v(β)−v(β)

β−β
(β − β) = v(β) + v′(β)(β − β) > v(β)

for all β ∈ [b, 1]. Then by Proposition S.7 in Yoder (2022), the unique τ∗ with
supp τ∗ = {β, β} solves maxτ{Eτv(β) s.t. Eτβ = α}.

(ii),(iii): Suppose that condition (i) fails, and v is upper semicontinuous. By
Proposition 3 in Yoder (2023), maxτ{Eτv(β) s.t. Eτβ = α} has a solution τ∗ with
| supp τ∗| ≤ 2. Then by Proposition S.7 in Yoder (2022), either

A. supp τ∗ = {α}, or

B. supp τ∗ = {β′, β
′} and v(β) ≤ v(β′) +

v(β
′
)−v(β′)

β
′−β′

(β − β′) for all β ∈ [0, 1].

Suppose that (B) holds. By Lemma 2 in Yoder (2022), we must have β′ < α < β
′
.

Since v is strictly concave on [0, b) and [b, 1], we cannot have {β′, β
′} ⊂ [0, b) or

{β′, β
′} ⊂ [b, 1]. Then β′ < α, b ≤ β

′
. Moreover, by Lemma 12, since v is continu-

ously differentiable on (0, b) and (b, 1), and limβ→0 v′(β) = ∞ and limβ→0 v′(β) =

−∞, we have 0 < β′ < α, b ≤ β
′
< 1, and

v(β
′
)−v(β′)

β
′−β′

= v′(β) for each β ∈ {β′, β
′}

with β ̸= b. Then since (i) fails, we must have β
′
= b.

Then if condition (i) fails and (B) holds, condition (ii) follows. By contraposi-
tive, if conditions (i) and (ii) both fail, we must have supp τ∗ = {α}; (iii) follows.

Now suppose that condition (i) fails and condition (ii) holds. Let τ′ be such
that supp τ′ = {β, b} and Eτ′β = α. Since v is strictly concave on [0, b), Eτ′v(β) =

Eτ′v(β) = v(β) +
v(b)−v(β)

b−β (α − β) = v(β) + v′(β)(α − β) > v(α). Then supp τ∗ ̸=
{α}, and so (B) must hold. Then we must have supp τ∗ = {β′, b} for some β′ < α.
Suppose toward a contradiction that β′ ̸= β. Then since v is strictly concave on

[0, b), v(β′) < v(β) + v′(β)(β′ − β) = v(β) +
v(b)−v(β)

b−β (β′ − β). Then E∗
τ[v(β)] =
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E∗
τ[v(β)] < E∗

τ

[
v(β) +

v(b)−v(β)

b−β (β − β)

]
= v(β) +

v(b)−v(β)

b−β (α − β) = Eτ′ [v(β)] =

Eτ′ [v(β)], a contradiction since τ∗ ∈ arg maxτ{Eτv(β) s.t. Eτβ = α}. It follows that
supp τ∗ = {β, b}.

Uniqueness of τ∗. First suppose that condition (i) holds, and supp τ∗ = {β, β}

for 0 < β < α, b < β < 1. By strict concavity, v(β) +
v(β)−v(β)

β−β
(β − β) = v(β) +

v′(β)(β − β) > v(β) for all β ∈ [0, b), and v(β) +
v(β)−v(β)

β−β
(β − β) = v(β) +

v′(β)(β − β) > v(β) for all β ∈ [b, 1].
Then τ∗ is the unique solution to maxτ{Eτv(β) s.t. Eτβ = α}: Suppose that

supp τ ̸= {β, β}. If | supp τ| is finite, then since v(β) < v(β) +
v(β)−v(β)

β−β
(β − β)

for all β /∈ {β, β}, we have Eτ[v(β)] < Eτ∗

[
v(β) +

v(β)−v(β)

β−β
(β − β)

]
= Eτ∗ [v(β)].

Otherwise, either τ is nondegenerate on [0, b) or it is nondegenerate on [b, 1]. Sup-
pose the former; then since v is strictly concave on [0, b) and [b, 1], by Jensen’s in-
equality, we have

Eτ[v(β)|β < b] < v(Eτ[β|β < b])

Eτ[v(β)|β ≥ b] ≤ v(Eτ[β|β ≥ b])

⇒ Eτ[v(β)] =
Eτ[v(β)|β < b]τ([0, b))
+Eτ[v(β)|β ≥ b]τ([b, 1])

<
v(Eτ[β|β < b])τ([0, b))
+v(Eτ[β|β ≥ b])τ([b, 1])

≤

(
v(β) +

v(β)−v(β)

β−β
(Eτ[β|β < b]− β)

)
τ([0, b))

+

(
v(β) +

v(β)−v(β)

β−β
(Eτ[β|β ≥ b]− β)

)
τ([b, 1])

= v(β) +
v(β)− v(β)

β − β
(α − β) = Eτ∗ [v(β)].

A symmetric argument shows that Eτ[v(β)] < Eτ∗ [v(β)] when τ is non-degenerate
on [b, 1].

For case (ii), the same argument with β = b shows that τ∗ is unique.
For case (iii), where supp τ∗ = {α}: First note that by Proposition 3 in Yoder

(2023), V(α) = v(α), and by Lemma 12, if α ̸= b, v′(α) = V′(α). Suppose that
τ′ ∈ arg maxτ{Eτv(β) s.t. Eτβ = α} and supp τ′ ̸= {α}. Then since Eτ′β = α,
there must be some β, β′ ∈ supp τ′ with β < α < β′. If α < b, then by Lemma
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12, since v is differentiable and strictly concave on (0, b), v′(β) = V′(α) = v′(α) <
v′(β), a contradiction. Alternatively, if α ≥ b, then by Lemma 12, since v is dif-
ferentiable on (b, 1), v′(β′) = V′(α). By Proposition 3 in Yoder (2023), V is affine
on conv(supp τ′) ⊇ [α, β′), so v(α) = V(α) = V(β′) + V′(β′)(α − β′) = v(β′) +

v′(β′)(α − β′), a contradiction since v is strictly concave on (b, 1).
Extension to non-upper semicontinuous v. Suppose that v is not upper semi-

continuous. Then limβ↑b v(β) > v(b). Let v̄ be the upper semicontinuous hull of v;
we have v̄(b) = limβ↑b v(β) and v̄(β) = v(β) for all β ̸= b, so that v̄ is strictly con-
cave and continuous on [0, b] and (b, 1]. Since Lemma 11 holds under upper semi-
continuity, there exists a unique τ∗ ∈ arg maxτ{Eτ v̄(β) s.t. Eτβ = α}, and

i. If there exist β, β with b, α ∈ (β, β) and
v(β)−v(β)

β−β
= v′(β) = v′(β), then

supp τ∗ = {β, β};

ii.’ If not, and there exists β < α with
v̄(b)−v(β)

b−β = v′(β), then supp τ∗ = {β, b};

iii.’ If the conditions in both (i) and (ii’) fail, then supp τ∗ = {α}.

But (ii’) cannot hold: Suppose it does. Then
v̄(b)−v̄(β)

b−β =
v̄(b)−v(β)

b−β = v̄′(β), a contra-
diction since v̄ is strictly concave and continuous on [0, b].

Thus, either (i) holds, or supp τ∗ = {α}; in either case, b /∈ supp τ∗. Then by
definition of v̄, for all τ with Eτβ = α, we have

Eτ∗ [v(β)] = Eτ∗ [v̄(β)] ≥ Eτ[v̄(β)] ≥ Eτ[v(β)],

and so τ∗ ∈ arg maxτ{Eτv(β) s.t. Eτβ = α}. Hence arg maxτ{Eτ v̄(β) s.t. Eτβ =

α} ⊆ arg maxτ{Eτv(β) s.t. Eτβ = α}; by By Lemma S.5 in Yoder (2022), the two
sets are equal, and τ∗ uniquely solves maxτ{Eτv(β) s.t. Eτβ = α}.

It remains to be shown that (ii) cannot hold, and so τ∗ is pinned down by (i),(ii),
and (iii), rather than by (i),(ii’), and (iii’). Suppose that it does, and there exists β <

α < b with v′(β) =
v(b)−v(β)

b−β . Since v is strictly concave on [0, b), v(β) + v′(β)(b −

β) > limβ↑b v(β) > v(b). Then v′(β) >
v(b)−v(β)

b−β , a contradiction.

Lemma 12. Suppose that v : [0, 1] → R ∪ {−∞} is upper semicontinuous and α ∈
ri(dom v), and that τ∗ ∈ arg maxτ{Eτv(β) s.t. Eτβ = α}. Then for any β ∈ supp τ∗,

i. If v is differentiable at β, v′(β) = V′(α).
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ii. If v is strictly concave on [0, z) and (1− z, 1] and continuously differentiable on (0, z)
and (1 − z, 1) for some z > 0, limx→0 v′(x) = ∞, and limx→0 v′(x) = −∞, then
β /∈ {0, 1}.

Proof. By Proposition 3 in Yoder (2023), v(β) = V(β), and V is affine on conv(supp π∗).
Then v(β) = V(α) + V′(α)(β − α). Since V is concave, for all β′ ∈ [0, 1] we have

v(β′) ≤ V(α) + V′(α)(β′ − α), (26)

= v(β) + V′(α)(β′ − β).

Then for 0 < ϵ < min{β, 1 − β},

v(β + ϵ) ≤ v(β) + V′(α)ϵ,

v(β − ϵ) ≤ v(β)− V′(α)ϵ,

⇒ v(β + ϵ)− v(β)

ϵ
≤ V′(α) ≤ v(β)− v(β − ϵ)

ϵ
.

Then if v is differentiable at β, (i) follows by the squeeze theorem.
For (ii), suppose β = 0, v is continuously differentiable on (0, z) and strictly

concave on [0, z) for some z > 0, and limx→0 v′(x) = ∞. Since limx→0 v′(x) = ∞,
there exists y ∈ (0, min{z, α}) such that v′(y) > V′(α). Since v is strictly concave
on [0, z), v(0) < v(y)− v′(y)y. By Proposition 3 in Yoder (2023), v(0) = V(0). And
by definition, V(y) ≥ v(y). Then by (26), we have

V(0) + V′(α)y = v(0) + V′(α)y < v(0) + v′(y)y < v(0) + (v(y)− v(0)) = v(y) ≤ V(y),

a contradiction since V is concave. A similar argument shows that β ̸= 1.

Lemma 13. Suppose that v : [0, 1] → R ∪ {−∞} is concave, and is strictly concave
about the threshold: For any β < b < β′ and any x ∈ ∂v(β), y ∈ ∂v(β′), we have x > y.
If supp τ = {β, β}, supp τ′ = {β′, β

′}, Eτβ = Eτ′β, β < b < β, and τ′ is a mean-
preserving spread of τ, then Eτ′ [v(β)] < Eτ[v(β)].

Proof. Let v1(β) = v(β) +
v(β)−v(β)

β−β
(β − β) be the secant line to v at β and β. Then

we have Eτ′ [v1(β)] = Eτ[v1(β)] = Eτ[v(β)].

Since v is concave, for any x ∈ ∂v(β) and y ∈ ∂v(β), we have x ≥ v(β)−v(β)

β−β
≥ y.

If either holds with equality, then since v is concave, it must be affine on [β, β] — a
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contradiction since β < b < β and v is strictly concave about the threshold. So we

must have x >
v(β)−v(β)

β−β
> y for all x ∈ ∂v(β) and y ∈ ∂v(β). Choose such an x

and y; since v is concave,

v(β
′
) ≤ v(β) + y(β

′ − β) < v1(β
′
), if β ̸= β

′
;

v(β′) ≤ v(β) + x(β′ − β) < v1(β′), if β ̸= β′.

Since τ and τ′ are distinct, it follows that Eτ′ [v(β)] < Eτ′ [v1(β)] = Eτ[v(β)], as
desired.

Lemma 14 (Non-negativity of Lagrange Multipliers). Let X ⊆ Rn, let f : X → R,
and let g : X → R. Consider the following pair of optimization problems

max
x∈X

f (x) s.t. gi(x) ≥ 0 ∀i = 1, ..., m (ICP)

max
x∈X

f (x) s.t.

gi(x) ≥ 0 ∀i = 1, ..., r

gi(x) = 0 i = r + 1, ..., m
(ECP)

Suppose (ICP) and (ECP) are ordinary convex programs (Rockafellar, 1970) satisfying the
hypotheses of Rockafellar (1970) Theorem 28.2. If all x∗ ∈ X that solve (ICP) satisfy
gi(x∗) = 0 for all i = r + 1, ..., m, then ∃λ ∈ Rm with λ ≥ 0 such that the value of

max
x∈X

f (x) +
m

∑
i=1

λigi(x) (ECL)

is equal to the value of (ECP).

Proof. Observe first that there exists a Kuhn-Tucker vector γ ∈ Rm with γ ≥ 0 such
that

max
x∈X

{ f (x) s.t. gi(x) ≥ 0 ∀i = 1, ..., m} = max
x∈X

{
f (x) +

m

∑
i=1

γigi(x)

}

by Theorem 28.2 of Rockafellar (1970). Next, since

max
x∈X

{ f (x) s.t. gi(x) ≥ 0 ∀i = 1, ..., m} = max
x∈X

 f (x) s.t.

gi(x) ≥ 0 ∀i = 1, ..., r

gi(x) = 0 i = r + 1, ..., m

 ,
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it follows immediately that

max
x∈X

 f (x) s.t.

gi(x) ≥ 0 ∀i = 1, ..., r

gi(x) = 0 i = r + 1, ..., m

 = max
x∈X

{
f (x) +

m

∑
i=1

γigi(x)

}
.

Setting λ = γ concludes the proof.

Implementability

Proof of Lemma 1 (Agent’s Distribution of Principal’s Posteriors) Let B ⊆ [0, 1].
If ⟨π|α⟩(B) = 0, the statement follows trivially. Otherwise, define SB ⊆ S to be the
set of signal realizations from π that induce posterior beliefs β ∈ B to a principal
with prior α. Then the probability with which an agent of type θ believes that SB

will occur is

θπ(SB|ω = 1) + (1 − θ)π(SB|ω = 0) =
θ

α
· απ(SB|ω = 1) +

1 − θ

1 − α
· (1 − α)π(SB|ω = 0).

By Bayes’ rule, note that∫
B

βd⟨π|α⟩(β) = π(SB|ω = 1)α; 1 −
∫

B
βd⟨π|α⟩(β) = π(SB|ω = 0)(1 − α).

So, the probability with which an agent of type θ believes that SB will occur sim-
plifies to ∫

B

(
θ

α
β +

1 − θ

1 − α
(1 − β)

)
d⟨π|α⟩(β)

as desired. □

Proof of Lemma 2 (Pooling is Local) Let D = {πp}p∈P ∪ {π0} be an imple-
mentable menu. For any p, p′ ∈ P such that conv(Θp) ∩ conv(Θp′) ̸= ∅ (if no
such pair p, p′ exists, pooling is local in D), without loss of generality37 there exists
some θ1, θ2 ∈ Θp and α ∈ (0, 1) such that θ̃ = αθ1 + (1 − α)θ2 ̸∈ Θp and θ̃ ∈ Θp′ .
Define the function

Qp(θ) = E⟨πp|βp⟩

[(
θ

βp
β +

1 − θ

1 − βp
(1 − β)

)
U(β)− G(β|βp)

]
.

37If this is not the case, there exists some θ1, θ2 ∈ Θp′ and α ∈ (0, 1) such that θ̃ = αθ1 + (1 −
α)θ2 ̸∈ Θp′ and θ̃ ∈ Θp. The argument is identical.
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Clearly, Qp is an affine function of θ. Then, by incentive compatibility (ICθ-P) for
θ = θ̃,

Qp′(αθ1 + (1 − α)θ2) ≥ Qp(αθ1 + (1 − α)θ2).

Incentive compatibility also implies that Qp(θ1) ≥ Qp′(θ1) and Qp(θ2) ≥ Qp′(θ2).
Then since Q is affine,

αQp′(θ1) + (1 − α)Qp′(θ2) = Qp′(αθ1 + (1 − α)θ2)

≥ Qp(αθ1 + (1 − α)θ2)

= αQp(θ1) + (1 − α)Qp(θ2) ≥ αQp′(θ1) + (1 − α)Qp′(θ2)

so these inequalities all hold with equality. Since Qp and Qp′ are affine, Qp(θ) =

Qp′(θ) for all θ ∈ [0, 1] (since Qp and Qp′ are affine, we can extend their domains
to [0, 1]). Next, denote p1 = Pr⟨πp|βp⟩(β ≥ b|ω = 1), p0 = Pr⟨πp|βp⟩(β ≥ b|ω = 0),
p′1 = Pr⟨πp′ |βp′ ⟩(β ≥ b|ω = 1), and p′0 = Pr⟨πp′ |βp′ ⟩(β ≥ b|ω = 0). Since Qp(θ) =

Qp′(θ) for all θ ∈ [0, 1],

(θp1 + (1 − θ)p0)u − C(πp) = (θp′1 + (1 − θ)p′0)− C(πp′).

Plugging in θ = 1 and θ = 0 yields the following expressions:

p1 − p′1 =
C(πp)− C(πp′)

u
; p0 − p′0 =

C(πp)− C(πp′)

u
.

Observe that, when πp is conducted by a type-θ agent, and the principal updates
from βp, the principal’s expected payoff is Rp(θ) = θp1w1 + (1 − θ)p0w0, which is
affine in θ. Moreover,

Rp(θ)− Rp′(θ) = θw1(p1 − p′1) + (1 − θ)w0(p0 − p′0) =
(

C(πp′ )−C(πp)

u

)
(θw1 + (1 − θ)w0).

Observe also that θw1 + (1 − θ)w0 < 0 for all θ ∈ Θ since θ < b by assumption.
There are two cases:

1. If C(πp′) ≥ C(πp), then Rp(θ) ≤ Rp′(θ) for all θ ∈ Θ, set D′ = D \ {πp}
and let the pooling sets be {Θ p̂} p̂∈P\{p}. All types which conducted πp in D
now conduct πp′ in D′, and D′ is implementable since Qp(θ) = Qp′(θ) for all
θ ∈ Θ. Observe that pooling is local in D′; all types in conv(Θp) conduct the
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same experiment πp′ .

2. If C(πp′) < C(πp), then Rp(θ) > Rp′(θ) for all θ ∈ Θ, set D′ = D \ {πp′}
and let the pooling sets be {Θ p̂} p̂∈P\{p′}. All types which conducted πp′ in
D now conduct πp in D′, and D′ is implementable since Qp(θ) = Qp′(θ) for
all θ ∈ Θ. Observe that pooling is local in D′; all types in conv(Θp) conduct
the same experiment πp.

In either case, the principal weakly prefers D′ to D. Since Θ is finite, we can repeat
this construction until there are no further pairs p, p′ ∈ P such that conv(Θp) ∩
conv(Θp′) ̸= ∅. □

Proof of Lemma 3 (Menus Are Binary Without Loss) Let D = {πp}p∈P ∪ {π0}
be implementable. By Lemma 6 (iii), there exists an implementable menu D̂ =

{π̂p}p∈P ∪ {π0} that satisfies (EC-P) such that E⟨π̂p|βp⟩[W(β)] ≥ E⟨πp|βp⟩[W(β)] for
each p ∈ P . By Corollary 2, there exist {ak}K

0 such that ak > ak−1 for each k, and for
each p ∈ P , Θp = (ak−1, ak] ∩ Θ for some k. Hence, it is without loss of generality
to let P = {1, . . . , K} and Θk = (ak−1, ak] ∩ Θ for each k ∈ P .

For each k ∈ P , let π′
k be the unique experiment such that supp⟨π′

k|βk⟩ =

{βk, β
k} where βk = E⟨π̂k|βk⟩[β|β < b] and β

k
= E⟨π̂k|βk⟩[β|β ≥ b]. Since U is con-

stant on [0, b) and [b, 1], then we have E⟨π′
k|βk⟩

[(
β−βk

βk(1−βk)

)
U(β)

]
= E⟨π̂k|βk⟩

[(
β−βk

βk(1−βk)

)
U(β)

]
,

and for all θ ∈ Θ, E⟨π′
k|βk⟩

[(
θ
βk

β + 1−θ
1−βk

(1 − β)
)

U(β)
]
= E⟨π̂k|βk⟩

[(
θ
βk

β + 1−θ
1−βk

(1 − β)
)

U(β)
]
.

However, since G(·|βk) is convex, we have C(π′
k) = E⟨π′

k|βk⟩[G(β|βk)] < E⟨π̂k|βk⟩[G(β|βk)] =

C(π̂k) whenever π̂k ̸= π′
k. Next, for each k, fix some θ̂k ∈ Θk. Then since D̂ satis-

fies (EC-P), we have

E⟨π′
k|βk⟩

[(
θ̂k
βk

β + 1−θ̂k
1−βk

(1 − β)
)

U(β)
]
− C(π′

k) ≥ E⟨π̂k|βk⟩

[(
θ̂k
βk

β + 1−θ̂k
1−βk

(1 − β)
)

U(β)
]
− C(π̂k)

= ∑
θi<θ̂k

(θi+1 − θi)E⟨π̂p∗(θi)
|βp∗(θi)

⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]

= ∑
θi<θ̂k

(θi+1 − θi)E⟨π′
p∗(θi)

|βp∗(θi)
⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]
;

this inequality is strict whenever π̂k ̸= π′
k and binds whenever π̂k = π′

k. Then for
each k ∈ P , either by Lemma 10 (when π̂k ̸= π′

k) or by letting π′′
k = π′

k (when π̂k =

π′
k), there exists a binary experiment π′′

k such that E⟨π′′
k |βk⟩[W(β)] ≥ E⟨π′

k|βk⟩[W(β)],
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E⟨π′
k|βk⟩

[(
β−βk

βk(1−βk)

)
U(β)

]
= E⟨π′′

k |βk⟩

[(
β−βk

βk(1−βk)

)
U(β)

]
, and the above constraint

binds; i.e.,

E⟨π′′
k |βk⟩

[(
θ̂k
βk

β + 1−θ̂k
1−βk

(1 − β)
)

U(β)
]
− C(π′′

k )

= ∑
θi<θ̂k

(θi+1 − θi)E⟨π′
p∗(θi)

|βp∗(θi)
⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]

= ∑
θi<θ̂k

(θi+1 − θi)E⟨π′′
p∗(θi)

|βp∗(θi)
⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]

Let D′ = {π′′
k }k∈P ∪ {π0}. Then for each k ∈ P , D′ satisfies (ECθ-P) for θ = θ̂k; we

next show that this extends to all θ ∈ Θk. Observe that since Θk is an interval by
Lemma 2, we can write

E⟨π′′
k |βp⟩

[(
θ̂k
βk

β + 1−θ̂k
1−βk

(1 − β)
)

U(β)
]
− C(π′′

k )

= ∑
θi<θ

(θi+1 − θi)E⟨π′′
p∗(θi)

|βp∗(θi)
⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]
+ (θ̂k − θ)E⟨π′′

k |βk⟩

[(
β−βk

βk(1−βk)

)
U(β)

]
.

Re-arranging, this can be written as

E⟨π′′
k |βk⟩

[(
θ̂k
βk

β + 1−θ̂k
1−βk

(1 − β)
)

U(β)
]
− C(π′′

k )

= ∑
θi<θ

(θi+1 − θi)E⟨π′′
p∗(θi)

|βp∗(θi)
⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]
+ E⟨π′′

k |βk⟩

[(
θ̂k
βk

β + 1−θ̂k
1−βk

(1 − β)
)

U(β)
]
− E⟨π′′

k |βk⟩

[(
θ
βk

β + 1−θ
1−βk

(1 − β)
)

U(β)
]

.

Re-arranging again yields

E⟨π′′
k |βk⟩

[(
θ
βk

β + 1−θ
1−βk

(1 − β)
)

U(β)
]
− C(π′′

k )

= ∑
θi<θ

(θi+1 − θi)E⟨π′′
p∗(θi)

|βp∗(θi)
⟩

[(
β−βp∗(θi)

βp∗(θi)
(1−βp∗(θi)

)

)
U(β)

]
,

and so D′ satisfies (EC-P).
Since D̂ is implementable, by Lemma 6 (ii), it satisfies (M-P). Hence, since

E⟨π̂k|βk⟩

[(
β−βk

βk(1−βk)

)
U(β)

]
= E⟨π′′

k |βk⟩

[(
β−βk

βk(1−βk)

)
U(β)

]
for each k ∈ P , D′ satisfies

(M-P). Then by Lemma 6 (i), D′ is implementable. □
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The Principal’s Problem

Proof of Lemma 4 (Exclusion Is At The Low End) Suppose for sake of contradic-
tion that there exist θ, θ′ ∈ Θ with θ′ > θ such that π∗

θ′ ∼B π0 but π∗
θ ̸∼B π0. Since

D∗ solves (COPT), it satisfies (M) and (EC); since it satisfies (EC), it is individually
rational. Then since D∗ is binary by Theorem 2, Proposition 2 implies that η(π∗

θ′) ≥
η(π∗

θ ). Since π∗
θ′ ∼ π0, η(π∗

θ′) = 0, and hence η(π∗
θ ) = 0. Then, π∗

θ (·|1) = π∗
θ (·|0),

and so π∗
θ ∼ π0, a contradiction. □

Proof of Lemma 5 (Experiments Where Monotonicity Binds) Suppose that (M(θ′′, θ′))

binds for some θ′′ > θ′. By Theorem 2, D∗ is binary. Since D∗ solves (COPT), it
satisfies (M) and (EC); since it satisfies (EC), it is individually rational, and so by
Lemma 8(ii), π∗

θ (s|1)θ
η(π∗

θ )θ+π∗
θ (s|0)

≥ b. Then since D∗ satisfies (M), by Proposition 2, for
each θ ∈ [θ′, θ′′], η(π∗

θ′′) ≥ η(π∗
θ ) ≥ η(π∗

θ′); by Lemma 8 (iv), η(π∗
θ′′) = η(π∗

θ′), and
so the quantities must be equal.

Then since D∗ satisfies (EC), Lemma 8 (ii) and Proposition 2 (ii) imply that for
each θ ∈ [θ′, θ′′],

E⟨π∗
θ |θ⟩[U(β)]− C(π∗

θ ) = (θη(π∗
θ′′) + π∗

θ (s|0))u − C(π∗
θ ) = u ∑

θi<θ

(θi+1 − θi)η(π
∗
θi
)

= (θ′′η(π∗
θ′′) + π∗

θ′′(s|0))u − C(π∗
θ′′)− u(θ′′ − θ)η(π∗

θ′′)

⇔ π∗
θ (s|0)u − C(π∗

θ ) = π∗
θ′′(s|0)u − C(π∗

θ′′). (27)

Moreover, we also have π∗
θ (s|1)θ

′′

θ′′π∗
θ (s|1)+(1−θ′′)π∗

θ (s|0)
≥ π∗

θ (s|1)θ
θπ∗

θ (s|1)+(1−θ)π∗
θ (s|0)

≥ b.
Now suppose that for some θ ∈ [θ′, θ′′), π∗

θ ̸= π∗
θ′′ . We prove a series of claims

to arrive at a contradiction.
Claim L5.1: The menu D′ = {π′

t}t∈Θ ∪ {π0} formed by letting π′
θ′′ = π∗

θ

and π′
t = π∗

t for all t ̸= θ′′ satisfies (EC) and (M). (M) follows immediately from
the fact that D∗ satisfies (M), as does (ECθ) for all types except θ′′. Then since

π∗
θ (s|1)θ

′′

θ′′π∗
θ (s|1)+(1−θ′′)π∗

θ (s|0)
≥ b, by Lemma 8(ii), we have

E⟨π∗
θ |θ′′⟩[U(β)]− C(π∗

θ ) = (θ′′π∗
θ (s|1) + (1 − θ′′)π∗

θ (s|0))u − C(π∗
θ )

= (θ′′π∗
θ′′(s|1) + (1 − θ′′)π∗

θ′′(s|0))u − C(π∗
θ′′) (by (27) and since η(π∗

θ′′) = η(π∗
θ ))

= E⟨π∗
θ′′ |θ

′′⟩[U(β)]− C(π∗
θ′′)

So since D∗ satisfies (ECθ) for type θ′′, D′ must as well. The claim follows.
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Claim L5.2: E⟨π∗
θ |θ′′⟩[W(β)] < E⟨π∗

θ′′ |θ
′′⟩[W(β)]. Suppose not. Then by construc-

tion of D′, ∑t∈Θ E⟨π′
t|t⟩[W(β)]σ(t) ≥ ∑t∈Θ E⟨π∗

t |t⟩[W(β)]σ(t). Then since D∗ solves
COPT, and D′ satisfies (EC) and (M) by Claim L5.1, D′ solves (COPT) as well — a
contradiction, since by Theorem 2, D∗ is the unique binary solution to (COPT).

Claim L5.3: π∗
θ′′(s|0) < π∗

θ (s|0). By Claim L5.2, we have

0 < E⟨π∗
θ′′ |θ

′′⟩[W(β)]− E⟨π∗
θ |θ′′⟩[W(β)]

= θ′′π∗
θ′′(s|1)w1 + (1 − θ′′)π∗

θ′′(s|0)w0 − (θ′′π∗
θ (s|1)w1 + (1 − θ′′)π∗

θ (s|0)w0)

= θ′′w1η(π∗
θ′′) + π∗

θ′′(s|0)(w1θ′′ + w0(1 − θ′′))−
(
θ′′w1η(π∗

θ ) + π∗
θ (s|0)(w1θ′′ + w0(1 − θ′′))

)
= (π∗

θ′′(s|0)− π∗
θ (s|0))(w1θ′′ + w0(1 − θ′′)) (since η(π∗

θ′′) = η(π∗
θ )).

Since θ′′ < b ≡ −w0
w1−w0

, the claim follows.

Claim L5.4:
π∗

θ′′ (s|1)θ
θπ∗

θ′′ (s|1)+(1−θ)π∗
θ′′ (s|0)

≥ b. By Claim L5.3, we have

η(π∗
θ′′)

π∗
θ′′(s|0)

>
η(π∗

θ )

π∗
θ (s|0)

⇒ 1

1 +
η(π∗

θ′′ )

π∗
θ′′ (s|0)

<
1

1 + η(π∗
θ )

π∗
θ (s|0)

⇒
π∗

θ′′(s|1)θ
θπ∗

θ′′(s|1) + (1 − θ)π∗
θ′′(s|0)

=
θ

θ + (1 − θ) 1

1+
η(π∗

θ′′ )
π∗

θ′′ (s|0)

>
θ

θ + (1 − θ) 1

1+
η(π∗

θ
)

π∗
θ
(s|0)

=
π∗

θ (s|1)θ
θπ∗

θ (s|1) + (1 − θ)π∗
θ (s|0)

≥ b.

Claim L5.5: E⟨π∗
θ |θ⟩[W(β)] < E⟨π∗

θ′′ |θ⟩
[W(β)]. From Claim L5.3, and since θ <

b ≡ −w0
w1−w0

, we have (since η(π∗
θ′′) = η(π∗

θ ))

0 < (π∗
θ′′(s|0)− π∗

θ (s|0))(w1θ + w0(1 − θ))

= θw1η(π∗
θ′′) + π∗

θ′′(s|0)(w1θ + w0(1 − θ))− (θw1η(π∗
θ ) + π∗

θ (s|0)(w1θ + w0(1 − θ)))

= θπ∗
θ′′(s|1)w1 + (1 − θ)π∗

θ′′(s|0)w0 − (θπ∗
θ (s|1)w1 + (1 − θ)π∗

θ (s|0)w0)

= E⟨π∗
θ′′ |θ⟩

[W(β)]− E⟨π∗
θ |θ⟩[W(β)],

as desired.
Claim L5.6: The menu D′′ = {π′′

t }t∈Θ ∪ {π0} formed by letting π′′
θ = π∗

θ′′ and
π′′

t = π∗
t for all t ̸= θ satisfies (EC) and (M). (M) follows immediately from the

fact that D∗ satisfies (M), as does (ECθ) for all types except θ. Then by Claim L5.4
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and Lemma 8(ii), we have

E⟨π∗
θ′′ |θ⟩

[U(β)]− C(π∗
θ′′) = (θπ∗

θ′′(s|1) + (1 − θ)π∗
θ′′(s|0))u − C(π∗

θ′′)

= (θπ∗
θ (s|1) + (1 − θ)π∗

θ (s|0))u − C(π∗
θ ) (by (27) and since η(π∗

θ′′) = η(π∗
θ ))

= E⟨π∗
θ′′ |θ

′′⟩[U(β)]− C(π∗
θ′′)

So since D∗ satisfies (ECθ) for type θ′′, D′ must as well. The claim follows.
It follows from Claim L5.5 that ∑t∈Θ E⟨π′′

t |t⟩[W(β)]σ(t) > ∑t∈Θ E⟨π∗
t |t⟩[W(β)]σ(t).

Then since D′′ satisfies (EC) and (M) by Claim L5.6, D∗ cannot solve (COPT), a
contradiction. □

Lemma 15. Let D∗ = {π∗
θ}θ∈Θ be the unique solution to (COPT) guaranteed by Theorem

2. For each θ ∈ Θ̃, max supp⟨π∗
θ |θ⟩ > b.

Proof. By Theorem 2, D∗ is binary; for each θ ∈ Θ̃, label supp⟨π∗
θ |θ⟩ = {β

θ
, βθ}

with β
θ
< θ < βθ. By definition, D∗ satisfies (EC), and so is individually rational.

Then by Lemma 8(ii), βθ =
π∗

θ (s|1)θ
η(π∗

θ )θ+π∗
θ (s|0)

≥ b for each θ ∈ Θ̃.

Now fix θ ∈ Θ̃ and suppose toward a contradiction that βθ = b. First, note that
we cannot have π∗

θ′ = π∗
θ for any θ′ < θ: if so, then we have

βθ′

1 − βθ′
=

π∗
θ (s|1)

π∗
θ (s|0)

θ′

1 − θ′
<

π∗
θ (s|1)

π∗
θ (s|0)

θ

1 − θ
=

βθ

1 − βθ

=
b

1 − b
,

and so βθ′ < b, a contradiction since π∗
θ′ = π∗

θ implies θ′ ∈ Θ̃.
Now for each θ′ < θ, let π′

θ′ = π∗
θ′ ; if θ = θ0, let π′

θ = π0, and if θ = θn for n > 0,
let π′

θ = π∗
θn−1

. Since D∗ solves (COPT), it satisfies (M); then if θ = θn for n > 0, it
follows from Lemma 5 (since π∗

θn−1
̸= π∗

θ ) and Lemma 8(iv) that

η(π′
θ′) ≤ η(π′

θ) < η(π∗
θ ) ≤ η(π∗

θ′′) for each θ′ < θ < θ′′. (28)

Moreover, if θ = θ0, then since π∗
θ ̸∼B π0, we likewise have η(π∗

θ ) > η(π′
θ).

π′
θ satisfies (IRθ): If θ = θ0, this is immediate, since then π′

θ = π0. If θ = θn for

n > 0, then by construction, π′
θ(s|1)θ

η(π′
θ)θ+π′

θ(s|0)
>

π′
θ(s|1)θn−1

η(π′
θ)θn−1+π′

θ(s|0)
=

π∗
θn−1

(s|1)θn−1

η(π∗
θn−1

)θn−1+π∗
θn−1

(s|0) ≥
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b. Then by Lemma 8(ii),

E⟨π′
θ |θ⟩[U(β)]− C(π′

θ) = (θη(π′
θ) + π′

θ(s|0))u − C(π′
θ)

= (θn−1η(π∗
θn−1

) + π∗
θn−1

(s|0))u − C(π∗
θn−1

) + (θ − θn−1)η(π
∗
θn−1

)

= E⟨π∗
θn−1

|θn−1⟩[U(β)]− C(π∗
θn−1

) ≥ 0. (29)

By Theorem 2, D∗ is a binary menu; since D∗ solves (COPT), it is a screening menu
that is individually rational, and satisfies (EC). Then by Proposition 2(ii), for each
θ′ ∈ Θ, E⟨π∗

θ′ |θ
′⟩[U(β)]− C(π′

θ′) = u ∑θi<θ′(θi+1 − θi)η(π
∗
θi
). Then for each θ′ < θ,

E⟨π′
θ′ |θ

′⟩[U(β)]− C(πθ′) = u ∑θi<θ′(θi+1 − θi)η(π
′
θi
). Moreover, if θ = θn for n > 0,

then by (29),

E⟨π′
θ |θ⟩[U(β)]− C(π′

θ) = u ∑
θi<θ′

(θi+1 − θi)η(π
∗
θi
) + (θn − θn−1)η(π

′
θn−1

)

= u ∑
θi<θ

(θi+1 − θi)η(π
′
θi
);

whereas if θ = θ0, then E⟨π′
θ |θ⟩[U(β)]− C(π′

θ) = 0. Finally, since η(π∗
θ ) > η(π′

θ),
for each θ′ > θ we have E⟨π∗

θ′ |θ
′⟩[U(β)] − C(πθ′) > u ∑θi≤θ(θi+1 − θi)η(π

′
θi
) +

u ∑θi∈(θ,θ′)(θi+1 − θi)η(π
∗
θi
). Then by Lemma 10 and Lemma 8(iv), for each θ′ >

θ, we can construct a binary π′
θ′ such that (a) E⟨π′

θ′ |θ
′⟩[W(β)] > E⟨π∗

θ′ |θ
′⟩[W(β)],

(b) η(π′
θ′) = η(π∗

θ′), and (c) E⟨π′
θ′ |θ

′⟩[U(β)]− C(πθ′) = u ∑θi<θ(θi+1 − θi)η(π
′
θi
) +

u ∑θi∈(θ,θ′)(θi+1 − θi)η(π
∗
θi
) = u ∑θi<θ′(θi+1 − θi)η(π

′
θi
) ≥ 0, and hence such that

π′
θ′ satisfies (IRθ′).

Now consider the menu D′ = {π′
t}t∈Θ ∪ {π0}. Since we have shown that π′

θ′ is
binary and satisfies (IRθ′) for each θ′ ≤ θ, and since D∗ is binary and individually
rational and π′

θ′ = π∗
θ′ for each θ′ < θ, D′ is individually rational. Then since

E⟨π′
θ′ |θ

′⟩[U(β)]− C(πθ′) = u ∑θi<θ′(θi+1 − θi)η(π
′
θi
) for all θ′ ∈ Θ, by Proposition

2(ii), D′ satisfies (EC). Since D∗ is a screening menu that is individually rational
and satisfies (M) and (EC), by Proposition 2(i), η(π′

θ′′) ≥ η(π′
θ′) for each θ′′ > θ′

with θ′, θ′′ ̸= θ; by (28) when θ > θ0, and since η(π′
θ) = 0 when θ = θ0, this holds

for all θ′, θ′′. Then by Proposition 2(i), D′ satisfies (M).
Finally, note that since W is affine on [0, b], and by assumption, supp⟨π∗

θ |θ⟩ ⊆
[0, b], E⟨π∗

θ |θ⟩[W(β)] = 0 ≤ E⟨π′
θ |θ⟩[W(β)]. Then since π′

θ′ = π∗
θ′ for each θ′ < θ, and

E⟨π′
θ′ |θ

′⟩[W(β)] > E⟨π∗
θ′ |θ

′⟩[W(β)] for each θ′ > θ, we have ∑θ′∈Θ σ(θ′)E⟨π∗
θ′ |θ

′⟩[W(β)] ≥
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∑θ′∈Θ σ(θ′)E⟨π0|θ′⟩[W(β)] (where this inequality is strict if θ < θN). Then D′ also
solves (COPT), a contradiction by Theorem 2.

Lemma 16 (Positive Lagrange Multipliers). Let {λ∗
n}N

n=0, {δ∗n}N
n=0 be as in Theorem

2. If θn ≥ θ, λ∗
n > 0.

Proof. By Lemma 14, λ∗
n ≥ 0. Suppose, for sake of contradiction, that λ∗

n = 0. Then
by (TBTθn), if n < N,

π∗
θn

∈ arg max
π

E⟨π|θn⟩

[
W(β)σ(θn)−

(
δ∗n+1 − δ∗n1n>0 + (θn+1 − θn)∑N

y=n+1 λ∗
y

) (
β−θn

θn(1−θn)

)
U(β)

]
and if n = N,

π∗
θn

∈ arg max
π

E⟨π|θn⟩

[
W(β)σ(θn) + δ∗n

(
β−θn

θn(1−θn)

)
U(β)

]
.

In either case, the objective function is constant for β < b and piecewise lin-
ear in β with a jump discontinuity at β = b. This leaves three possibilities: (i)
supp⟨π∗

θn
|θn⟩ = {θn}, (ii) supp⟨π∗

θn
|θn⟩ = {0, b}, or (iii) supp⟨π∗

θn
|θn⟩ = {0, 1}.

Case (i) cannot hold, since θn ≥ θ. If case (ii) or case (iii) holds, E⟨π∗
θn
|θn⟩[U(β)−

G(β|θn)] = −∞. Since π∗
θn

is the experiment that type θn conducts in the unique
optimal menu D∗, by Theorem 2, πθn must satisfy (IRθ). Hence, we reach a contra-
diction.

Lemma 17. The “distortion term” R(b, θn)/λ∗
n is strictly positive whenever θ ≤ θn <

θN and either n = 0 or δ∗n = 0.

Proof. Suppose that θ ≤ θn < θN and either n = 0 or δ∗n = 0. Then we have

R(b, θn)/λ∗
n =

(
b − θn

θn(1 − θn)

)
u

((
δ∗n+1 + (θn+1 − θn)

N

∑
i=n+1

λ∗
i

)
1n<N − δ∗n1n>0

)
/λ∗

n

=

(
b − θn

θn(1 − θn)

)
u

(
δ∗n+1 + (θn+1 − θn)

N

∑
i=n+1

λ∗
i

)
/λ∗

n > 0,

since θn < b; δ∗n+1 ≥ 0; and by Lemma 16, λ∗
i > 0 for all i with θi > θ.

The Pareto Frontier and Distortion

Lemma 18 (Pareto Improvements Are Not Less Informative). If π is on the Pareto
frontier for type θ ∈ Θ̃, and is a Pareto improvement on π∗

θ for type θ, then π∗
θ ̸⪰B π.
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Proof. By Corollary 1, | supp⟨πθ|θ⟩| = 2. Write supp⟨πθ|θ⟩ = {β, β} and supp⟨π∗
θ |θ⟩ =

{β∗, β
∗} for β < θ < β and β∗ < θ < β

∗
. By Lemma 15, since θ ∈ Θ̃, we must have

β
∗
> b.
Suppose toward a contradiction that π∗

θ is Blackwell-more informative than π.
Then ⟨π∗

θ |θ⟩ is a mean-preserving spread of ⟨π|θ⟩. If β < b, then (IRθ) fails, a
contradiction by Theorem 2. If β = b, then since β

∗
> b, it is immediate that

E⟨πθ |θ⟩[W(β)] = 0 < E⟨π∗
θ |θ⟩[W(β)], a contradiction. Finally, if β > b, then since W

is convex and strictly convex about the threshold, it follows from Lemma 13 that
E⟨π|θ⟩[W(β)] < E⟨π∗

θ |θ⟩[W(β)], a contradiction.

Lemma 19 (Monotonicity of Pareto Dominance). If π′ Pareto dominates π for type θ,
supp⟨π|θ⟩ = {β, β} and supp⟨π′|θ⟩ = {β′, β

′} with β, β
′ ≥ b, and π′(s|1) < π(s|1),

then π′ Pareto dominates π for all θ′ > θ.

Proof. For each θ′ > θ, label supp⟨π|θ′⟩ = {β
θ′

, βθ′} and supp⟨π′|θ⟩ = {β′
θ′

, β
′
θ′}

with β
θ′
< θ′ < βθ′ and β′

θ′
< θ′ < β

′
θ′ .

Then since β, β
′ ≥ b, for each θ′ > θ,

βθ′

1 − βθ′
=

π(s|1)
π(s|0)

θ′

1 − θ′
>

π(s|1)
π(s|0)

θ

1 − θ
=

β

1 − β
≥ b

1 − b
, and

β
′
θ′

1 − β
′
θ′

=
π′(s|1)
π′(s|0)

θ′

1 − θ′
>

π′(s|1)
π′(s|0)

θ

1 − θ
=

β
′

1 − β
′ ≥

b
1 − b

.

Hence, βθ′ , β
′
θ′ > b.

Moreover, since β, β
′ ≥ b, E⟨π|θ⟩[W(β)] = π(s|0)w0 + θ(π(s|1)w1 −π(s|0)w0) ≥

0 and E⟨π′|θ⟩[W(β)] = π′(s|0)w0 + θ(π′(s|1)w1 − π′(s|0)w0) ≥ 0.
Now suppose for sake of contradiction that the principal weakly prefers π to

π′ when his prior is θ′. Then

0 < E⟨π′|θ′⟩[W(β)] = π′(s|0)w0 + θ′(π′(s|1)w1 − π′(s|0)w0)

≤ E⟨π|θ′⟩[W(β)] = max{0, π(s|0)w0 + θ′(π(s|1)w1 − π(s|0)w0)}
⇒ = π(s|0)w0 + θ′(π(s|1)w1 − π(s|0)w0),
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but since π′ Pareto dominates π for type θ,

E⟨π′|θ⟩[W(β)] = π′(s|0)w0 + θ(π′(s|1)w1 − π′(s|0)w0)

≥ E⟨π|θ⟩[W(β)] = max{0, π(s|0)w0 + θ(π(s|1)w1 − π(s|0)w0)}
≥ π(s|0)w0 + θ(π(s|1)w1 − π(s|0)w0).

Adding these inequalities yields

θ(π(s|1)w1 − π(s|0)w0)

+θ′(π′(s|1)w1 − π′(s|0)w0)
≤ θ′(π(s|1)w1 − π(s|0)w0)

+θ(π′(s|1)w1 − π′(s|0)w0)

=⇒ (θ′ − θ)(π′(s|1)w1 − π′(s|0)w0) ≤ (θ′ − θ)(π(s|1)w1 − π(s|0)w0)

=⇒ (π′(s|1)w1 − π′(s|0)w0) ≤ (π(s|1)w1 − π(s|0)w0)

=⇒ (π′(s|1)− π(s|1))w1 ≤ (π′(s|0)− π(s|0))w0

Then since π′(s|1) > π(s|1), we have π′(s|0) < π(s|0) since w1 > 0 and w0 < 0. It
follows that

E⟨π′|θ′⟩[W(β)] = π′(s|0)w0(1 − θ′) + θ′π′(s|1)w1 > π(s|0)w0(1 − θ′) + θ′π(s|1)w1

= E⟨π′|θ⟩[W(β)],

a contradiction. Hence, the principal strictly prefers π′ to π at θ′.
Now suppose toward a contradiction that π′ does not give a type-θ′ agent a

strictly greater expected payoff than π. Then since βθ′ , β
′
θ′ > b, it follows from

Lemma 8(ii) that

E⟨π′|θ′⟩[U(β)]− C(π′) = (π′(s|0) + θ′η(π′))u − C(π′)

≤ E⟨π|θ′⟩[U(β)]− C(π) = (π(s|0) + θ′η(π))u − C(π)

but

E⟨π′|θ⟩[U(β)]− C(π′) = (π′(s|0) + θη(π′))u − C(π′)

≥ E⟨π|θ⟩[U(β)]− C(π) = (π(s|0) + θη(π))u − C(π).
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Adding these inequalities yields

θη(π)u + θ′η(π′)u ≤ θη(π′)u + θ′η(π)u

=⇒ (θ′ − θ)η(π′)u ≤ (θ′ − θ)η(π)u

=⇒ π′(s|1)− π′(s|0) = η(π′) ≤ η(π) = π(s|1)− π(s|0).

Then since π′(s|1) > π(s|1), we have π′(s|0) > π(s|0). Since the principal strictly
prefers π′ to π at θ, then

θπ′(s|1)w1 + (1 − θ)π′(s|0)w0 > θπ(s|1)w1 + (1 − θ)π(s|0)w0

=⇒ (1 − θ)w0(π
′(s|0)− π(s|0)) > θw1(π(s|1)− π′(s|1)) > θw1(π(s|0)− π′(s|0))
=⇒ −(1 − θ)w0 > θw1 (since π′(s|0) > π(s|0))

=⇒ θw1 + (1 − θ)w0 > 0 = bw1 + (1 − b)w0

=⇒ θ > b,

a contradiction. It follows that π′ is a Pareto improvement on π for θ′.

Proof of Proposition 4 (No Distortion at the Top) There are two possible cases.

Case I: π∗
θN

̸= π∗
θN−1

. By Theorem 2, π∗
θN

solves (TBTθn) for θ = θN. If π∗
θN

̸=
π∗

θN−1
, then by Lemma 5, (M) does not bind for type θN. Then by (CS), δ∗N = 0, and

so π∗
θN

solves

max
π∈Π

E⟨π|θN⟩

[
σ(θN)

λ∗
θN

W(β) + U(β)− G(β|θN)

]
.

It follows that ⟨π∗
θN
|θN⟩ solves (SPPθ) for λp = σ(θN)

λ∗
θN

and λa = 1. The claim follows

from Proposition 3.

Case II: π∗
θN

= π∗
θN−1

. If π∗
θN

= π∗
θN−1

, suppose for sake of contradiction that
there exists some π′ which Pareto improves upon π∗

θN
for type θN. Since D∗ satis-

fies (EC), π∗
θN

satisfies (IRθ) for θ = θN; then since E⟨π0|θN⟩[U(β)]− C(π0) = 0 =

E⟨π0|θN⟩[W(β)], π′ ̸∼B π0. Without loss, let π′ be on the Pareto frontier for type θN;
then by Corollary 1, π′ is binary. Observe that D′ = {π′} ∪ D∗ \ {πθ∗N

} gives the
principal and the type θN agent a weakly higher payoff (with one inequality strict).
We consider two subcases.
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Case II.1: η(π′) ≥ η(π∗
θN
). Since π′ is a Pareto improvement on π∗

θN
, we have

E⟨π′|θN⟩[U(β)]− C(π′) ≥ E⟨π∗
θN

|θN⟩[U(β)]− C(π∗
θN
)

= ∑
i<N

(θi+1 − θi)E⟨πθi
|θi⟩

[(
β − θi

θi(1 − θi)

)
U(β)

]
. (30)

since D∗ solves (COPT). If (30) holds with equality, then by Proposition 1, D′ is im-
plementable; moreover, since π′ is a Pareto improvment on π∗

θN
, E⟨π′|θN⟩[W(β)] >

E⟨π∗
θN

|θN⟩[W(β)], and so D′ attains a higher value than D∗ in (COPT), a contradic-
tion. Alternatively, if (30) is strict, then by Lemma 10, we can construct an exper-
iment π′′ such that E⟨π′′|θN⟩[W(β)] > E⟨π′|θN⟩[W(β)] ≥ E⟨π∗

θN
|θN⟩[W(β)], η(π′′) =

η(π′) ≥ η(π∗
θN
), and (30) holds with equality. It follows that D′′ = {π′′} ∪ D∗ \

{π∗
θN
} is implementable and attains a higher value than D∗ in (COPT), a contra-

diction.
Case II.2: η(π′) < η(π∗

θN
). Then π∗

θN
̸∼B π0, since η(π∗

θN
) > 0. Since π′

is a Pareto improvement on π∗
θN

, we have E⟨π′|θN⟩[W(β)] ≥ E⟨π∗
θN

|θN⟩[W(β)], or
equivalently,

π′(s|0)(θNw1 + (1 − θN)w0) + θNη(π′)w1 ≥ π∗
θN
(s|0)(θNw1 + (1 − θN)w0) + θNη(π∗

θN
)w1.

Since η(π′) < η(π∗
θN
), the above inequality implies that π′(s|0) < π∗

θN
(s|0) since

θNw1 + (1 − θN)w0 < 0 (which follows from the assumption that θN < b). We
prove two intermediate claims.

Claim P4.1: In Case II.2, for any θ < θ∗N, π′ is a Pareto improvement on π∗
θN

for type θ. To see this, note that

(π′(s|0)−π∗
θN
(s|0))(θw1 + (1 − θ)w0) + θ(η(π′)− η(π∗

θN
))w1

≥ (π′(s|0)− π∗
θN
(s|0))(θNw1 + (1 − θN)w0) + θN(η(π

′)− η(π∗
θN
))w1

≥ 0,

where the first inequality follows from the fact that θw1 +(1− θ)w0 < θNw1 +(1−
θN)w0, π′(s|0)− π∗

θN
(s|0) < 0, and η(π′) < η(π∗

θN
). The second inequality follows
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from the fact that E⟨π′|θN⟩[W(β)] ≥ E⟨π∗
θN

|θN⟩[W(β)]. Therefore

π′(s|0)(θw1 + (1 − θ)w0) + θη(π′)w1 ≥ π∗
θN
(s|0)(θw1 + (1 − θ)w0) + θη(π∗

θN
)w1;

⇒ E⟨π′|θ⟩[W(β)] = max{0, π′(s|0)(θw1 + (1 − θ)w0) + θη(π′)w1}
≥ max{0, π∗

θN
(s|0)(θw1 + (1 − θ)w0) + θη(π∗

θN
)w1} = E⟨π∗

θN
|θN⟩[W(β)].

For each θ ∈ Θ, label supp⟨π′|θ⟩ = {β′
θ
, β

′
θ} and supp⟨π∗

θN
|θ⟩ = {β∗

θ
, β

∗
θ} with

β′
θ
< β

′
θ and β∗

θ
< β

∗
θ . Since π(s|0)(θw1 +(1− θ)w0)+ θη(π)w1 ≥ 0 ⇔ supp⟨π|θ⟩∩

[b, 1] ̸= ∅ for any binary π, it follows that for any θ ∈ Θ, β
∗
θ ≥ b =⇒ β

′
θ ≥ b.

Next, observe that

((π′(s|0)− π∗
θN
(s|0) + θ(η(π′)− η(π∗

θN
)))u − C(π′) + C(π∗

θN
)

≥ ((π′(s|0)− π∗
θN
(s|0) + θN(η(π

′)− η(π∗
θN
)))u − C(π′) + C(π∗

θN
)

≥ 0,

where the first inequality follows from the fact that η(π′) < η(π∗
θN
) and the second

follows from Lemma 8(ii) and the facts that E⟨π′|θN⟩[U(β)]−C(π′) ≥ E⟨π∗
θN

|θN⟩[U(β)]−
C(π∗

θN
) ≥ 0 and π′, π∗

θN
̸∼B π0. Moreover, since η(π′) < η(π∗

θN
) and π′(s|0) <

π∗
θN
(s|0), we must have C(π′) < C(π∗

θN
). Therefore,

(π′(s|0) + θη(π′))u − C(π′) ≥ (π∗
θN
(s|0) + θη(π∗

θN
))u − C(π∗

θN
).

and since β
∗
θ ≥ b =⇒ β

′
θ ≥ b, by Lemma 8(ii),

E⟨π′|θ⟩[U(β)]− C(π′) =

{
(π′(s|0) + θη(π′))u − C(π′), β

′
θ ≥ b,

−C(π′), β
′
θ < b;

≥
{
(π∗

θN
(s|0) + θη(π∗

θN
))u − C(π∗

θN
), β

∗
θ ≥ b,

−C(π∗
θN
), β

∗
θ < b;

= E⟨π∗
θN

|θ⟩[U(β)]− C(π∗
θN
).

Thus, π′ Pareto improves upon π∗
θN

for all θ ≤ θN. ■

Claim P4.2: Let z = min{n|π∗
θn

= π∗
θN
}. In Case II.2, there exists a binary π̂ ∈

Π with η(π̂) > η(π∗
θz−1

), and thus π̂ ̸∼B π0, that is a Pareto improvement on π∗
θN

for all θ ≤ θN. If η(π′) ≥ η(π∗
θz−1

) then by Claim P4.1 we can let π̂ = π′. Suppose
not and η(π′) < η(π∗

θz−1
). First note that η(π∗

θN
) > η(π∗

θz−1
) by Lemma 5. Then
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there exists α ∈ (0, 1) such that αη(π∗
θN
) + (1 − α)η(π′) > η(π∗

θz−1
). Then, observe

that the experiment π̂ = απ +(1− α)π′ Pareto dominates π∗
θN

for any θ ≤ θN since

E⟨π̂|θ⟩[W(β)] = αE⟨π′|θ⟩[W(β)] + (1 − α)E⟨π∗
θN

|θ⟩[W(β)] ≥ E⟨π∗
θN

|θ⟩[W(β)]

and

E⟨π̂|θ⟩[U(β)]− C(π̂) = α(E⟨π′|θ⟩[U(β)]− C(π′)] + (1 − α)(E⟨π∗
θN

|θ⟩[U(β)]− C(π∗
θN
))

≥ E⟨π∗
θN

|θ⟩[U(β)]− C(π∗
θN
)

where the first equality follows from linearity of C(π) (Axioms 2 and 3 in Pomatto
et al. (2023)). Therefore, π̂ Pareto dominates π∗

θN
for all θ ≤ θN. Moreover, observe

that η(π̂) = π̂(s|1) − π̂(s|0) = αη(π∗
θN
) + (1 − α)η(π′) > η(π∗

θN
). The claim

follows. ■

Let π̂ be the experiment from Claim P4.2. Then we have

E⟨π̂|θz⟩[U(β)]− C(π̂) ≥ E⟨π∗
z |θz⟩[U(β)]− C(π∗

θN
)

= ∑
i<z

(θi+1 − θi)E⟨πθi
|θi⟩

[(
β − θi

θi(1 − θi)

)
U(β)

]
(31)

since π̂ Pareto dominates π∗
θN

for θz. Then since π̂ ̸∼B π0, by Lemma 8(ii), we must

have π̂(s|1)θz
η(π̂)θz+π̂(s|0 ≥ b, and hence π̂(s|1)θn

η(π̂)θn+π̂(s|0 ≥ b for each n ≥ z.
If (31) holds with equality, then by Lemma 8(ii),

(π̂(s|0) + θzη(π̂))u − C(π̂) = u ∑
i<z

(θi+1 − θi)η(π
∗
θi
);

⇒ (π̂(s|0) + θnη(π̂))u − C(π̂) = u ∑
i<z

(θi+1 − θi)η(π
∗
θi
) +

n−1

∑
i=z

(θi+1 − θi)η(π̂)∀n ≥ z,

and so D′ = {π̂}θ≥θz ∪ D∗ \ {π∗
θ}θ≥θz must be individually rational by Lemma

8(ii), and thus satisfies (EC) and ((M)) by Proposition 2. Moreover, since π̂ is a
Pareto improvment on π∗

θN
, E⟨π̂|θN⟩[W(β)] > E⟨π∗

θN
|θN⟩[W(β)], and so D′ attains a

higher value than D∗ in (COPT), a contradiction.
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Alternatively, if (31) is strict, then by Lemma 8(ii),

(π̂(s|0) + θzη(π̂))u − C(π̂) > u ∑
i<z

(θi+1 − θi)η(π
∗
θi
);

⇒ E⟨π̂|θn⟩[U(β)]− C(π̂) = (π̂(s|0) + θnη(π̂))u − C(π̂) (32)

> u ∑
i<z

(θi+1 − θi)η(π
∗
θi
) +

n−1

∑
i=z

(θi+1 − θi)η(π̂)∀n ≥ z.

(33)

Then by Lemma 10 and Lemma 8, for each n ≥ z we can construct a binary ex-
periment π′′

θn
with E⟨πθn |θn⟩[W(β)] > E⟨π̂|θn⟩[W(β)] ≥ E⟨π∗

θN
|θn⟩[W(β)] such that

η(π′′
θn
) = η(π̂) ≥ η(π∗

θz−1
) and (33) holds with equality. Then by Proposition 2,

D′′ = {π′′
θ }θ≥θz ∪D∗ \ {π∗

θ}θ≥θz satisfies (EC) and ((M)). But since E⟨π′′
θn
|θn⟩[W(β)] >

E⟨π∗
θN

|θn⟩[W(β)] for each n ≥ z, D′′ attains a higher value than D∗ in (COPT), a con-
tradiction.

Therefore, in all possible cases there is no experiment which Pareto dominates
π∗

θN
for type θN. □

Proof of Proposition 5 (Optimal Menu vs Complete Information Benchmark)
This argument is analogous to Theorem 3(ii). Suppose that πθn is binary, on the
Pareto frontier for type θn, E⟨πθn |θn⟩[W(β)] ≥ E⟨π∗

θn
|θ∗n⟩[W(β)], and E⟨πθn |θn⟩[U(β)−

G(β|θn)] ≥ 0. Since E⟨πθn |θn⟩[U(β)− G(β|θn)] ≥ 0, we must have C(πθn) < ∞.
Suppose that E⟨πθn |θn⟩[W(β)] ≥ E⟨π∗

θn
|θn⟩[W(β)]. Analogously to Lemma 18, we

argue that π∗
θn

cannot be Blackwell-more informative than πθn . Suppose toward a
contradiction that π∗

θn
is Blackwell-more informative than πθn : πθn(s|0) ≥ π∗

θn
(s|0),

while πθn(s|1) ≥ π∗
θn
(s|1). Since πθn and π∗

θn
are distinct, one of these inequalities

must be strict. Then ⟨π∗
θn
|θn⟩ is a mean-preserving spread of ⟨πθn |θn⟩. If β < b,

then (IRθ) fails, a contradiction by Theorem 2. If β = b, then since β
∗
> b, it is

immediate that E⟨πθn |θn⟩[W(β)] = 0 < E⟨π∗
θn
|θn⟩[W(β)], a contradiction. Finally, if

β > b, then since W is convex and strictly convex about the threshold, it follows
from Lemma 13 that E⟨πθn |θn⟩[W(β)] < E⟨π∗

θn
|θn⟩[W(β)], a contradiction.

Suppose toward a contradiction that πθn(s|1) ≥ π∗
θn
(s|1); then π∗

θn
̸≺B πθn .

Since π∗
θn

̸⪰B πθn , we must have πθn(s|0) > π∗
θn
(s|0). Let z = max{i ≤ n | δi =

0 or i = 0}. That is, θz is the largest type less than or equal to θn such that the
monotonicity constraint does not bind. Then by Lemma 5, π∗

θn
= π∗

θz
.
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We show that there must be some π′ ∈ Π that is on the Pareto frontier for type
θz for which π′(s|1) ≥ π∗

θn
(s|1), π′(s|0) > π∗

θn
(s|0), and C(π′) < ∞. If πθn is on the

Pareto frontier for type θz, this is immediate by setting π′ = πθn ; suppose not. Then
there is some π ∈ Π that is a Pareto improvement on πθn for type θz; choose π′ to
be such a π that is on the Pareto frontier for type θz, and note that since C(πθn) <

∞, we must have C(π′) < ∞ as well. If π′(s|1) < πθn(s|1), then by Lemma 19,
π′ is also a Pareto improvement on πθn for type θn, a contradiction since πθn is on
the Pareto frontier for type θn. So we must have π′(s|1) ≥ πθn(s|1) ≥ π∗

θn
(s|1). By

Lemma 18, πθn ̸⪰B π′, so π′(s|0) > πθn(s|0) > π∗
θn
(s|0).

Let supp⟨π∗
θn
|θz⟩ = {β∗, β

∗} with β∗ < θz < β
∗
, and supp⟨π′|θz⟩ = {β′, β

′}
with β < θz < β. Since π′(s|1) ≥ π∗

θn
(s|1) and π′(s|0) > π∗

θn
(s|0), π′ and π∗

θn

cannot be Blackwell-ranked. Then one of two cases must hold: (a) β ≤ β∗ and β ≤
β
∗
, with one inequality strict; or (b) β ≥ β∗ and β ≥ β

∗
, with one inequality strict.

Suppose that (b) holds. By Lemma 15, since θz ∈ Θ̃, we must have β
∗
> b.

By Proposition 3, since π′ is on the Pareto frontier for type θz, there exist Pareto
weights λp, λa ≥ 0 such that ⟨π′|θz⟩ solves (SPPθ) for θ = θz. Since C(π′) < ∞, π′

is not fully informative: π′ ̸∼B π∞. Then by Corollary 1, either equation (2) or (3)
from Section 4.2 holds for θ = θz. Moreover, since π∗

θn
solves (TBTθn) for θ = θz,

(6) holds (with θn replaced by θz) at (β∗, β
∗
). Then we have

R(b, θz)/λ∗
z = u − G(β

∗|θz)− G′(β
∗|θz) + G(β∗|θz) + G′(β∗|θz)(b − β∗)

< u − G(β|θz)− G′(β|θz) + G(β|θz) + G′(β|θz)(b − β) = 0, (34)

but this contradicts Lemma 17. So it must be the case that (a) β ≤ β∗ and β ≤ β
∗
,

with one inequality strict. Then since Bayesian updating is multiplicative in likeli-
hood ratios, and β ≤ β

∗
, we must have π∗

θn
(s|1)/π∗

θn
(s|0) ≥ π′(s|1)/π′(s|0). Since

π′(s|0) > π∗
θn
(s|0), we have π′(s|0) < π∗

θn
(s|0), and hence π∗

θn
(s|1) > π′(s|1), a

contradiction. □
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