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Abstract

In many environments, agents form agreements that have externalities or are multi-

lateral, and may view some agreements as substitutable and others as complementary.

This paper presents an approach that ensures the existence of stable outcomes in

any environment, including those with arbitrary externalities, preferences, and market

structures. It does so by endogenizing the agents’ choice functions while employing the

standard stability concept. Instead of assuming that each agent chooses their favorite

set of contracts, we require agents to choose optimally given correct beliefs about the

choices of others. We show that stable outcomes are uniquely pinned down by agents’

beliefs, which can be microfounded by their relative bargaining power. Our results

provide new tools for the counterfactual analysis of stable outcomes and allow the use

of matching-theoretic stability in new applications.
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1 Introduction

Matching theory has facilitated the study of many applications where agents negotiate

agreements with one another. In particular, the literature has extensively explored settings

where these agreements (sometimes referred to as contracts) are substitutable, bilateral,

and do not have externalities. In these environments, the literature has established the

general existence of stable outcomes — sets of agreements that are robust to both individual

deviations to remove agreements and joint deviations to form new ones — and provided

ways to find them (e.g., the seminal work of Gale and Shapley (1962), Kelso and Crawford

(1982), Hatfield and Milgrom (2005), and Hatfield et al. (2013)).

But in many environments, agents may form agreements that have externalities, are not

substitutable, or are multilateral. Agreements among competing firms to merge or engage

in collusion may exert externalities on other market participants, influencing their incentives

to enter into alternative agreements. These agreements might involve more than two firms.

And depending on the market structure, some could be complementary, while others are

substitutable. Analogous features characterize international treaties, legislative negotiations

to pass a bill, and agreements to add a healthcare provider to an insurance network, among

others. The prevalence of these features has created demand in applied research for matching-

theoretic tools that are capable of accommodating them (e.g., Agarwal et al. (2021)).

Accommodating any of these features in general matching environments has been chal-

lenging, because each prevents standard approaches from guaranteeing the existence of stable

outcomes.1 This paper introduces an approach that allows matching-theoretic stability to be

applied in any setting, including those with general externalities, arbitrary preferences and

market structures, and multilateral agreements. Our key observation is that the challenges

presented by these features can each be attributed to an implicit assumption about the way

that choices are derived. Specifically, when agents choose from a set of available agreements,

they select their favorite subset, thus behaving as if each available contract will go into effect

if they choose it. However, for contracts to go into effect, they must also be chosen by other

agents. We show that when agents take others’ choices into account — i.e., they choose

optimally given beliefs about others’ choices, and those beliefs are correct at every set of

available agreements and consistent across sets of available agreements — stable outcomes

always exist (Theorems 1 and 2). Thus, we ensure existence not by modifying the usual

1When both complementarity and substitutability are present in the same environment, the existence of
stable outcomes is generally not guaranteed (Hatfield and Kojima (2008)). Moreover, standard existence
results do not always apply in the presence of externalities (Sasaki and Toda (1996)) or in the absence of
a key assumption on market structure (acyclicity) that is incompatible with multilateral agreements (Gale
and Shapley (1962); Hatfield and Kominers (2012)).

2



definition of stability, but by endogenizing the agents’ choice functions (and the beliefs that

generate them). We call such a profile of choice functions and beliefs strategically consistent.

Once we endogenize agents’ choices given their beliefs, the standard stability concept pins

down an outcome (and, as we show in Theorem 1, does so uniquely.)

This result does not require conditions on preferences (e.g., (full) substitutability or com-

plementarity), market structure (e.g., acyclic trading networks), or the agents that agree-

ments can involve (e.g., bilateral agreements) or affect (e.g., no externalities). The literature

has demonstrated that these conditions ensure that stable outcomes can be represented as

fixed points of monotone operators; by Tarski’s theorem, such fixed points always exist.2

Theorem 2 instead constructs fixed points in profiles of choice functions and beliefs for all

agents, without relying on a monotonicity condition or a fixed point theorem. Each such

profile of choice functions then pins down a unique stable outcome (Theorem 1).

Given the fixed point relationship between optimal choices and correct beliefs, there may

be many outcomes that can arise from strategically consistent profiles of choice functions

and beliefs. While our framework permits alternative restrictions, our main characterization

results (Theorems 3 and 4) focus on profiles that are Pareto optimal, in the sense that agents

never reject contracts from a Pareto-dominating outcome merely because of coordination

failure. As it turns out, one can construct such profiles by solving a set of constrained social

planner’s problems (Theorem 3).

This provides one direction of our “welfare theorem” for strategic consistency (Theorem

4), which parallels welfare theorem results in the matching literature with transferable utility

(e.g., Hatfield et al. (2013)). But since it decentralizes efficient outcomes with a profile of

beliefs rather than prices, Theorem 4 applies even to nontransferable utility settings, and

without the conditions on preferences or market structure that are, in general, necessary for

competitive equilibrium prices to exist.

This characterization has important implications. First, observe that strategically con-

sistent beliefs play the same role in our framework that bargaining weights play in Nash

bargaining: Each profile of beliefs or bargaining weights predicts a unique outcome, but dif-

ferent profiles of beliefs or weights predict different outcomes. Theorem 3 makes this analogy

precise by showing that a strategically consistent profile — and hence (by Theorem 1) the

stable outcome it gives rise to — can be uniquely pinned down by agents’ bargaining power,

i.e., their weights in a Nash product. Thus, Nash bargaining weights can be treated as a

“reduced form” for strategically consistent beliefs — or, if they are taken as primitive, a

microfoundation for those beliefs. Intuitively, the agents’ beliefs about one another’s choices

reflect their relative bargaining power, and vice versa. Consequently, even in environments

2Since the set of stable outcomes is discrete, fixed points are not guaranteed more generally.
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where stable outcomes exist with nonstrategic choice, Theorem 3 gives a foundation for

pinning down a single outcome using agents’ relative bargaining power. In this sense, the

multiplicity of predicted outcomes is a prediction across environments where agents’ relative

bargaining power differs.

Second, Theorems 3 and 4 provide a tool that makes the problem of finding stable out-

comes more tractable. Instead of checking all possible deviations (as is common in network or

coalition formation) or running a matching algorithm (as is common in two-sided matching),

Theorem 3 shows that one only has to solve a single optimization problem — specifically,

a welfare maximization problem — to find a stable outcome. And given the agents’ beliefs

— or their bargaining weights — this stable outcome is uniquely pinned down in any en-

vironment. Theorem 4, on the other hand, allows us to find all outcomes that are stable

for some strategically consistent profile satisfying Pareto optimality, simply by computing a

constrained Pareto frontier.3

Third, Theorems 3 and 4 allow new comparative statics and counterfactual predictions.

As is well known, with the standard approach, following a change in the environment (e.g.,

when the government levies a tax or a regulator disallows a contract), the new set of stable

outcomes may be empty, since the existence of a stable outcome is not guaranteed. Even

if existence is not a problem, the specific outcome that will result is not pinned down.

Endogenizing agents’ choices allows one to make a unique prediction about the counterfactual

outcome: Theorem 3 allows one to recover agents’ relative bargaining power (in the form

of bargaining weights) from an observed stable outcome. In a counterfactual scenario, one

can apply Theorem 3 with these bargaining weights to uniquely pin down the new stable

outcome. We give a detailed description of this procedure in the companion paper, Rostek

and Yoder (2025), and show how our approach allows the application of matching- theoretic

tools to make unique predictions about the way an observed outcome would change under

different kinds of counterfactual scenarios.

Because our approach allows general externalities, market structures, and preferences,

and permits multilateral agreements, it enables the use of matching-theoretic stability in ap-

plications where it has not traditionally been used, such as network and coalition formation,

and bargaining with externalities. As we illustrate in Section 4, this allows one to make

predictions in these environments that are robust to arbitrary deviations.

This is a larger set of deviations than is considered by existing tools used in these en-

vironments. Specifically, relative to perhaps the most common solution concept in network

3More generally, we show that one can construct strategically consistent profiles of choices and beliefs
from an order on the set of nonstrategically individually rational outcomes. In the Online Appendix, we
consider restrictions on beliefs besides Pareto optimality, and show that each places additional structure on
this order, capturing the corresponding restrictions on beliefs about other agents’ choices.
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formation, pairwise stability (Jackson and Wolinsky (1996)), (matching-theoretic) stability

permits agents to swap links (important when they are substitutes or with externalities)

or add multiple links (significant when they are complements or with externalities).4 And

relative to Nash-in-Nash bargaining (Horn and Wolinsky (1988)), popular in applied work on

environments with externalities, stability allows agents to simultaneously alter their agree-

ments with multiple counterparties, endogenizes the agreements counterparties make, and

allows agents to exclude counterparties by declining to make any agreements with them. The

main obstacle to using stability in these contexts is that with the standard, nonstrategic ap-

proach to choice, these additional deviations create an existence problem that is not present

with pairwise stability or the Nash-in-Nash solution. Rather than considering robustness to

a smaller class of deviations, as those solution concepts do, strategic consistency sidesteps

the existence problem by endogenously determining which deviations are relevant.

Similarly, in models where coalitions can form, our results allow existence and uniqueness

without imposing any restrictions on deviations allowed (e.g., only to subsets of coalitions) or

coalitions that can form (e.g., partitions). In particular, because matching-theoretic stability

requires outcomes to be robust to arbitrary deviations, its predictions are independent of

assumptions about the specific ways that agents form coalitions.

Related Literature

Our paper relates to three strands of the matching literature. The first strand seeks

to extend matching theory to accommodate agents’ preferences over agreements that do

not satisfy the classical substitutability condition. Several studies have demonstrated that

the tools of matching theory can be applied to settings in which preferences satisfy more

general forms of substitutability, such as full substitutability (Ostrovsky (2008); Hatfield

et al. (2013); Fleiner et al. (2019)), or by applying substitutability under a basis change

on the set of contracts, as in gross substitutes and complements (Sun and Yang (2006,

2009); Teytelboym (2014)). Another approach considers environments where all contracts

are complementary rather than substitutable (Rostek and Yoder (2020)).5 Other authors

have shown that, instead of imposing restrictions on preferences, we can rely on conditions

on the market structure (e.g., Bando and Hirai (2021)) or its size (e.g., Jagadeesan and Vocke

(2021)), relax feasibility constraints (Nguyen and Vohra (2018)), or consider outcomes that

4Sadler (2023) also allows agents to swap links, rather than merely sever them, and establishes some of
the classical matching-theoretic results in networks without externalities.

5While our results in Rostek and Yoder (2020) also allow for multilateral contracts and externalities,
these features are not a central focus there. With nontransferable utility, they do not create any additional
challenges for the existence and characterization results from Rostek and Yoder (2020), precisely because
complementarity ensures that whenever a block is relevant for stability, the implicit assumptions that non-
strategic agents make about other agents’ choices turn out to be correct.
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are dynamically stable in markets with patient firms (Liu et al. (2023)). We show that when

agents’ choices are endogenized by requiring them to be optimal given correct beliefs about

the choices of others, rather than being determined by a single-agent optimization problem,

the existence of stable outcomes can be established for arbitrary preferences over agreements,

market structures, and market sizes.

Second, our work also contributes to the literature on matching with externalities. One

strand of this literature explores the externalities that arise in settings of applied interest,

such as labor market matching with couples (e.g., Kojima et al. (2013)). Other studies con-

sider general environments in matching markets with two sides (e.g., Bando (2012), Fisher

and Hafalir (2016), Pycia and Yenmez (2023), and Liu et al. (2023)). Of these, our paper is

closest to Pycia and Yenmez (2023), who introduce a matching with contracts framework in

two-sided settings with a classical substitutability condition extended to allow for external-

ities. Our results apply to environments where preferences may not satisfy substitutability

and whose market structures may not be two-sided.6

Within the literature on two-sided matching markets with externalities, papers like Sasaki

and Toda (1996) and Hafalir (2008) consider agents who determine what to take as given

about other agents’ matchings through the use of an estimation function — a concept akin to

the beliefs considered in this paper.7 The agent then evaluates potential partners by taking

as given the least preferred outcome that is plausible according to her estimation function.

While Sasaki and Toda (1996) take these estimation functions as a primitive of the model,

Hafalir (2008) allows them to be determined based on a consistency condition: an agent’s

estimation function treats matchings as plausible if they are stable when the agent and her

partner are removed from the market. In contrast, we require an agent’s belief to be correct,

i.e., match the choices made by other agents from the available set of contracts.8

Finally, our paper contributes to the literature on multilateral contracts. There is a

large literature on the formation of coalitions or clubs; see, e.g., Pycia (2012); Ellickson

6In Rostek and Yoder (2023), we focus on two-sided markets with externalities, and consider a weaker
notion of strategic sophistication: Instead of requiring that agents have correct beliefs about all other agents’
choices, we only require agents to have correct beliefs about the choices of others on the same side of the
market. We show that the standard substitutability and monotone externalities conditions introduced by
Pycia and Yenmez (2023) ensure the existence of profiles of choice functions and beliefs that satisfy this
notion of strategic consistency, and hence stable outcomes. Intuitively, these conditions ensure that agents
on the same side of the market can all form correct beliefs about each other’s behavior.

7While the beliefs considered in this paper specify the choices that an agent thinks others would make
from a proposed set of contracts, estimation functions give a set of outcomes that an agent thinks are
plausible, given the identity of the individual she is matched to.

8One approach to ruling out agents’ disagreements about the outcomes of blocking proposals has been
to strengthen the solution concept (e.g., setwise stability (Klaus and Walzl (2009))). Strategic consistency
eliminates disagreements without strengthening the usual stability concept, while also ensuring existence
even with externalities or non-substitutable preferences.
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et al. (1999). Hatfield and Kominers (2015) initiated the study of multilateral agreements in

the matching with contracts framework. They examine settings with continuously divisible

contracts and transferable utility, and leverage the concavity of agents’ valuations to establish

the existence of competitive equilibria (and thus, as they demonstrate, stable outcomes).

As is standard in the literature, we work with environments where the set of contracts

is discrete, rather than convex, and so the tools they use from convex analysis are not

available. On the other hand, Bando and Hirai (2021) investigate a setting with a finite

number of multilateral contracts, as we do. Unlike this paper or Hatfield and Kominers

(2015), the authors use conditions on the market structure that guarantee the existence of

stable outcomes, irrespective of agents’ preferences.

Our paper also relates to several papers in the literature on matching with incomplete

information that also explicitly incorporate agents’ beliefs. In, e.g., Chakraborty et al.

(2010), Liu et al. (2014), Liu (2020), and Liu (2022), agents form beliefs about other agents’

privately observed types, and make choices given those beliefs. We do not consider incomplete

information. Instead, beliefs in our paper are deterministic, and pertain to the contracts

others will choose from each possible set of available contracts, rather than their types.9

The structure of the paper is as follows. Section 2 introduces the environment. Section 3

presents an example that illustrates the paper’s main ideas, and provides our main existence

and characterization results. Section 4 discusses some of the novel applications of stability

that are allowed by our approach.

2 Model

2.1 Setting

We work in a matching with contracts framework adapted to accommodate externalities

and agreements among more than two agents.10 Additionally, we do not assume a certain

market structure (such as two-sidedness or acyclicity). Our model accommodates, for in-

stance, network formation, many-to-many matching with contracts, and coalition formation.

There is a finite set I of agents and a finite set X of agreements, or contracts, that they

9In particular, the beliefs in our model are not equivalent to beliefs in the sense of Liu (2022) about the
output of a correlation device: In cooperative games with incomplete information, Liu (2022, Theorems 1
and 6) shows that without payoff-relevant uncertainty, the presence of payoff-irrelevant signals cannot change
the set of predictions consistent with stability. As we show, in matching models with complete information,
considering beliefs to determine choice can alter the set of outcomes that are consistent with stability, in
particular by making it nonempty (Theorem 1).

10Agreements between more than two agents cannot be represented by multiple independent bilateral
agreements; see Example S.2 in the Online Appendix.
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can sign with one another. Each contract x ∈ X requires the agreement of a set of agents

N(x) ⊆ I in order to be enacted. For sets of contracts Y ⊆ X, we write N(Y ) :=
⋃
x∈Y N(x).

We assume that each contract involves at least two agents: For all x, |N(x)| ≥ 2. A contract

x is multilateral if |N(x)| > 2 and bilateral if |N(x)| = 2. For each agent i ∈ I, denote

the set of contracts requiring i’s agreement as Xi := {x | i ∈ N(x)}. In keeping with the

literature, we say that Xi is the set of contracts that name i. Similarly, let XJ :=
⋃
i∈J Xi,

let X−i := X \Xi, and for sets of contracts Y ⊆ X, write Yi := Y ∩Xi and Y−i := Y ∩X−i.
Each agent i has preferences over sets of implemented contracts, or outcomes, which are

represented by a utility function ui : 2X → R+.11 This allows for externalities : Agents’

utility can depend on the presence of contracts that do not name them. In settings where

it does not — i.e., when ui(Y ∪ Z) = ui(Y ∪ Z ′) for each Z,Z ′ ⊆ X−i and i ∈ I — we say

that there are no externalities.

A choice function for agent i is a function Ci : 2Xi × 2X−i → 2Xi . Its arguments are the

sets of contracts that are available — those being discussed in a negotiation — to agent i

and to agents other than i. When agent i’s choice function is Ci, Ci(Yi|Y−i) gives the set of

contracts that agent i chooses from the set of contracts Yi available to him, given that the

set of contracts available to other agents is Y−i. Its second argument allows for the presence

of externalities.

In Section 3, we describe two different ways in which these choice functions can be

derived, given agents’ preferences. In order to ensure that these endogenously derived choice

functions are single-valued, we assume that agents’ payoff functions have no indifferences,

conditional on the set of contracts that do not name them: ui(Y ∪X ′) 6= ui(Z ∪X ′) for each

distinct Y, Z ⊆ Xi and X ′ ⊆ X−i.

2.2 Stability

Our solution concept is the usual matching-theoretic definition of stability, generalized

to our setting with multilateral contracts and externalities.12

Definition (Stability). Given choice functions {Ci}i∈I , a set of contracts Y ⊆ X is stable

if it is

i. Individually rational : Yi = Ci(Yi|Y−i) for all i ∈ I.

11Throughout, we use 2B to denote the power set of a set B.
12In particular, our solution concept coincides with those of Gale and Shapley (1962) (one-to-one match-

ing), Hatfield and Milgrom (2005) (many-to-one matching with contracts), and Hatfield and Kominers (2012)
(matching on networks) in the settings they consider.
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ii. Unblocked : There does not exist a nonempty Z ⊆ (X \ Y ) such that for all i ∈ N(Z),

Zi ⊆ Ci((Z ∪ Y )i|(Z ∪ Y )−i).

In words, a set of contracts Y is stable if (i) when Y is the set of available contracts,

no one rejects any contracts from it (individual rationality), and (ii) no group of agents can

propose to change the set of contracts in place by adding a new set of contracts Z, or block,

that they are each willing to choose when made available (i.e., discussed in a negotiation)

alongside Y .13

We accommodate externalities by allowing agents who participate in a block to take into

account the contracts available to the agents they negotiate with: the second argument of

the choice function in (ii) includes both the existing contracts Y−i and blocking contracts

Z−i that do not name agent i.14

3 Strategic Consistency

This section presents the paper’s main idea, which stems from a simple yet crucial obser-

vation about the relationship between the (non-)existence of stable outcomes and the way

choice functions are derived from preferences.

By definition, the stability of an outcome is completely determined by agents’ choice

functions. In matching models like ours where preferences (rather than choice functions) are

taken as primitive, the standard approach to deriving those choice functions is to let them

be the agents’ favorite subsets of the available contracts. With externalities, this usually

becomes their favorite subset conditional on the enactment of whatever set of contracts they

13We could alternatively define a block as the full proposal for changing the set of contracts, and replace
(ii) with

ii’. There does not exist Z ⊆ X such that for all i ∈ N(Z \ Y ), Zi = Ci((Z ∪ Y )i|(Z ∪ Y )−i).

If we did, our stability concept would generalize weak setwise stability (Klaus and Walzl (2009)), rather than
stability, to account for externalities. These definitions are equivalent with strategic consistency: Whenever
a block (in the sense of (ii)) is successful, all agents agree about the set of contracts that will obtain after it
occurs (as they must in (ii’)). But with nonstrategic choice, (ii’) is stronger than (ii), and so replacing (ii)
with it weakens the definition of stability. We discuss this point in greater detail in Section S.2 of the Online
Appendix.

14 We generalize the usual definition of stability to accommodate externalities in a slightly different way
than Pycia and Yenmez (2023) do in their two-sided setting. Under the definition they adopt, agents in
a blocking coalition do not anticipate any changes to the set of contracts signed by other agents, even the
other members of the blocking coalition. (That is, when evaluating a block Z of Y , the second argument of
the choice function in their concept is Y−i, rather than Z−i ∪ Y−i.) Our stability definition instead assumes
that agents in a blocking coalition account for the contracts added by the other agents in the coalition.
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take as given for everyone else. That is,

Ĉi(Yi|Y−i) := arg max
S⊆Yi

ui(S ∪ Y−i) for each Y ⊆ X. (1)

When they make choices this way, agents behave as if each available contract will go into

effect if they choose it. But for a contract to go into effect, it must also be chosen by other

agents. Hence, when agents are equipped with the choice functions described in (1), they

implicitly assume that all contracts that are available will actually be chosen by the other

agents they name. Our key observation is that the standard approach does not always yield

a stable outcome precisely because these assumptions may be incorrect. A familiar example

illustrates this point.

Example 1 (Roommate Problem). Consider the classical roommate problem from Gale

and Shapley (1962). Three friends must come to an agreement about which two of them will

rent an apartment together: I = {1, 2, 3}, X = {x12, x23, x31}, and N(xij) = {i, j} for each

i, j ∈ I. There are no externalities. Each agent prefers having any roommate to being un-

matched, and cannot be part of two roommate agreements: ui({xij}) > ui(∅) > ui({xij, xik})
for each i ∈ I and each j 6= k 6= i. Moreover, agents’ preferences over roommates form a

cycle: u1(x12) > u1(x31), u2(x23) > u2(x12), and u3(x31) > u3(x23).

1 : x12 ≻1 x31

2 : x23 ≻2 x123 : x31 ≻3 x23

x31 x12

x23

Figure 1: A visual description of the environment in Example 1.

Part 1. Suppose that preferences translate into choices in the standard way, and each

agent’s choice function is defined by (1). Then there is a blocking cycle that makes every

outcome unstable: When the set of available contracts is {x12, x31}, agent 1 chooses x12

(and rejects x31), while agent 2 chooses the only agreement available to him, x12. Hence,

{x12} blocks {x31} — and by symmetry, {x31} blocks {x23} and {x23} blocks {x12}. Since

no outcome with more than one contract can be individually rational, and ∅ is blocked by

any {xij}, we arrive at the standard conclusion that — with choice functions defined as in

(1) —the roommate problem has no stable outcome.
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This prediction seems at odds with the observation that in the real world, people find

roommates. As it turns out, it can be attributed to implicit assumptions by the agents that

happen to be mistaken.

To see this, first suppose that all three agreements are available. Each of the three

friends now has access to their favorite roommate agreement, so with the standard approach

to choice described in (1), that is precisely the agreement they choose:

Ĉ1(X1|X−1) = {x12}; Ĉ2(X2|X−2) = {x23}; Ĉ3(X3|X−3) = {x31}. (2)

None of these choices coincide: Every agreement is rejected by someone, and so no pair agrees

to room together even though each agent would prefer rooming with anyone to remaining

alone. This is because agents implicitly made incorrect assumptions about each other’s

choices. For instance, when agent 1 chose Ĉ1(X1|X−1) = {x12} according to (1), he implicitly

assumed that each x12 and x31 would take effect if he chose it. In particular, he was also

assuming that when all agreements were available, x31 would be chosen by agent 3 (which

turned out to be correct), and x12 would be chosen by agent 2 (which turned out to be

incorrect). If he had correctly anticipated the other agents’ choices, he would have chosen

{x31} instead.

Part 2. But what if we replaced agents’ incorrect assumptions with correct beliefs about

others’ choices, and required those beliefs to be consistent across all sets of available con-

tracts? Then the blocking cycle vanishes, and a stable outcome exists.

For instance, suppose that when all agreements are available, agent 1 believes that, as

in (2), x31 will be chosen by agent 3, but x12 will be rejected by agent 2. Then his optimal

choice is C1(X1|X−1) = {x31}. If agent 3 correctly believes that x31 will be chosen by agent 1,

then since it is his favorite contract, he will optimally choose it as well: C3(X3|X−3) = {x31}.
And if agent 2 correctly believes that neither of his friends will choose an agreement with

him, it is optimal for him to choose nothing: C2(X2|X−2) = ∅. Hence, the beliefs agent 1

had about the contracts that agents 2 and 3 would choose are correct.

Since they are correct, these beliefs eliminate the myopic behavior observed in Part 1

when all three contracts were available. If they are consistent with beliefs about choices

from other sets of contracts, they also restore the existence of a stable outcome. Recall that

with all three contracts available, none of the agents believed that any of the others would

choose x23. If beliefs are consistent across sets of available contracts, making x23 unavailable

should not change agents’ beliefs about the remaining contracts {x12, x31}. Hence, choices

should not change either: we should have C1({x12, x31}|∅) = C3({x31}|{x12}) = {x31}, and

C2({x12}|{x31}) = ∅, and so {x31} blocks {x12}, rather than the other way around.
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These choices break the blocking cycle that ruled out the existence of a stable outcome.

In fact, if we continue to construct agents’ choice functions in this manner — as optimal

choices given correct beliefs that are consistent across sets of available contracts — we arrive

at a profile for which {x31} is the unique stable outcome.15 Even though agents 1 and 2

would prefer the outcome to be {x12} rather than {x31}, they fail to coordinate on a block

because both correctly believe that the other agent would not follow through with it. �

In this section, we show that Example 1’s conclusion holds more generally. Our main

results show that if we account for agents’ beliefs about the contracts that other agents will

choose, and derive their choice functions given those beliefs, then a unique stable outcome

exists in any matching environment, whenever beliefs are correct (match other agents’ actual

choices) and cross-set consistent (match beliefs at sets from which irrelevant contracts are

removed). We call such a profile of choice functions and beliefs strategically consistent.

Definition (Strategic Consistency and Nonstrategic Choice). Given agents’ payoffs

{ui : 2X → R}i∈I ,

• A profile of choice functions {Ci : 2Xi × 2X−i → 2Xi}i∈I and beliefs {µi : 2X → 2X}i∈I
is strategically consistent if for each i ∈ I,

i. µi is correct given {Cj}j 6=i: For each Y ⊆ X, µi(Y ) = C−i(Y ) :=
⋂
j 6=i(Cj(Yj|Y−j)∪

Y−j).

ii. Ci is optimal given µi: For each Y ⊆ X, Ci(Yi|Y−i) = arg maxS ui(S∪µi(Y )−i) s.t. S ⊆
µi(Y )i.

iii. µi is cross-set consistent given {Ci}i∈I : For each Y, Z ⊆ X, if Y ⊇ Z ⊇ Cj(Yj|Y−j)
for all j ∈ I, then µi(Z) = µi(Y ).

• Each agent i’s nonstrategic choice function Ĉi is defined by (1).

15The choices and beliefs pinned down above (those when all contracts are available and when {x12, x31}
are available) pin down the stable outcome as {x31}. They are consistent with multiple profiles of optimal
choices and correct beliefs at other sets of available contracts, and while each of these profiles has the same
stable outcome, they may lead to different comparative statics (e.g., if {x31} were removed). One such profile
is given by

Ci(∅|∅) = ∅; Ci({xij}|∅) = {xij}; Ci(∅|{xjk}) = ∅, for each i 6= j 6= k;

C1({x31}|{x23}) = {x31}; C2({x23}|{x31}) = ∅; C3({x31, x23}|∅) = {x31};
C1({x12}|{x23}) = ∅; C2({x12, x23}|∅) = {x23}; C3({x23}|{x12}) = {x23}.

Other strategically consistent profiles can be found for which the stable outcome is different (e.g., {x23} or
{x12}); see Example 2. Intuitively, the players’ beliefs about one another’s choices in each of these profiles
reflect the players’ relative bargaining power. We explore this connection in greater detail in Section 3.3.

12



Strategic consistency is motivated by two assumptions about agents’ epistemic sophisti-

cation. First, when faced with any set of contracts that might be proposed, they are able

to form correct beliefs about which contracts the other agents will choose. (We model these

beliefs as sets of contracts µi(Y ) that no other agent rejects from Y , since that is what is

relevant to an agent’s choice.) Second, when contracts that are not chosen by anyone are

removed, agents do not believe that others would change their behavior (cross-set consis-

tency). (E.g., in Example 1, since no agent chose x23 when all contracts were available, we

required that none of them would change their choices when we made x23 unavailable.) That

is, when agents negotiate, those negotiations are independent of irrelevant alternatives. This

criterion has bite because strategic consistency requires agents to form beliefs at each set of

available contracts, not just those that are involved in blocks of a potentially stable outcome.16

When agents instead assume that each contract they choose will go into effect, we call

the resulting choice functions — those derived from preferences using the standard approach

— nonstrategic.

3.1 Stable Outcomes

Our first main result shows that each strategically consistent profile of choice functions

and beliefs pins down a stable outcome. Because agents make correct assumptions about

each other’s behavior, none of the conditions used to show that stable outcomes exist with

nonstrategic choice — e.g., substitutable preferences, no (or well-behaved) externalities,

acyclic or two-sided market structure — are necessary to ensure that stable outcomes exist.

We say an outcome Y ⊆ X is stable for a profile {Ci, µi}i∈I if it is stable given choice

functions {Ci}i∈I .

Theorem 1 (Strategic Consistency and Stability). For each strategically consistent

profile of choice functions and beliefs {Ci, µi}i∈I , there is a unique outcome that is stable for

that profile.

All three parts of strategic consistency play a role in this result. First, correctness and

optimality ensure that agents have common beliefs that match each other’s choices. Formally:

Lemma 1. Suppose choice functions {Ci}i∈I are optimal given beliefs {µi}i∈I , and beliefs

{µi}i∈I are correct given choice functions {Ci}i∈I . Then for each i, j ∈ I and Y ⊆ X,

16Observe that in Example 1, {x31} can only be blocked by {x12} or {x23} alone since agent 2 cannot
sign both agreements. (The important part here is that agent 2 would never choose both agreements; the
interpretation in the roommate example just so happens to be that doing so is infeasible.) But cross-set
consistency ruled out blocking cycles — thus ensuring a stable outcome — precisely because agents had
correct beliefs about each other’s choices when all of the contracts were available together.
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i. Agents’ beliefs must coincide: µi(Y ) = µj(Y ) := µ(Y ).

ii. Agents’ choices match common beliefs: Ci(Yi|Y−i) = µ(Y ) ∩Xi.

Intuitively, when choice is optimal given correct beliefs, no agent ever chooses a contract

from a set of available contracts that another agent rejects from that set; i.e., unlike in Part

1 of Example 1, contracts must either be rejected by everyone they name or rejected by no

one. Consequently, since all agents’ beliefs are correct, they must (i) coincide and (ii) match

the choices of each individual agent, not just the set of contracts that none of them reject

(as in the definition of correct beliefs).

Second, since choices match a common belief at each set of available contracts, consistency

of those beliefs across sets of available contracts rules out the kind of blocking cycles that can

lead to nonexistence when choice is nonstrategic (as in Part 1 of Example 1). In particular, it

ensures that whatever set µ(X) agents believe others will choose from the set of all contracts

X, they also believe others will choose µ(X) from any set Y ⊇ µ(X) that contains it.

This guarantees that each agent chooses precisely the contracts in µ(X) that name them

when Y = µ(X) (individual rationality), and chooses no new contracts Z that might be

available alongside it when Y = µ(X) ∪ Z (unblocked). Hence, µ(X) is stable for the

profile {Ci, µi}i∈I . It also guarantees that µ(X) is the unique stable outcome for that profile:

any S 6= µ(X) either isn’t individually rational (if S ⊃ µ(X)) or is blocked by µ(X) \ S
(otherwise).

Thus, Theorem 1 is constructive: once we have found a strategically consistent profile, it

is straightforward to find the unique outcome that is stable for that profile, since it coincides

with any agent’s beliefs µi(X) when all contracts are available. Consequently, with strategic

consistency, instead of finding stable outcomes, we can direct our efforts toward finding and

characterizing profiles of choice functions and beliefs.

Corollary 1 (Stability and Beliefs). Given a strategically consistent profile {Ci, µi}i∈I ,
Y is the unique stable outcome for that profile of choice functions and beliefs if and only if

µi(X) = Y for each i ∈ I.

The process by which these outcomes are formed is simple. Each agent forms correct and

consistent beliefs about the way that other agents deviate both noncooperatively (i.e., by

dropping contracts unilaterally) and cooperatively (i.e., by responding to proposed blocks).

Then, they each agree to the contracts that are part of the unique set that is robust to these

deviations.
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3.2 Strategically Consistent Profiles

Theorem 1 shows that each strategically consistent profile of choice functions and beliefs

pins down a unique stable outcome. However, the existence of these profiles is not immediate:

Strategically consistent profiles are equilibrium objects, in the sense that given a set of

contracts, each agent makes optimal choices, given the choices of the others.

Our second main result shows that strategically consistent profiles always exist in any

matching environment.

Theorem 2 (Strategically Consistent Profiles: Existence). Strategically consistent

profiles exist.

Theorem 2 establishes the existence of fixed points in choice functions (i.e., strategically

consistent profiles) rather than fixed points in outcomes (e.g., the outcomes of a deferred ac-

ceptance algorithm). To explain it, we describe the algorithm that we introduce to construct

strategically consistent profiles of choice functions and beliefs.

We start by considering the outcomes Y that are nonstrategically individually rational :

Ĉi(Yi|Y−i) = Yi for each i ∈ I. These outcomes play an important role in the construction

of strategically consistent profiles: they are precisely the sets of contracts that agents can

believe others will choose from an available set of contracts.17 This fact facilitates a converse

to Lemma 1 that powers our construction algorithm.

Lemma 2 (Converse of Lemma 1). Suppose that {Ci, µi}i∈I is a profile of choice functions

and beliefs such that beliefs are common across agents, and choices match beliefs: For each

i, j ∈ I and Y ⊆ X, (i) µi(Y ) = µj(Y ) := µ(Y ), and (ii) Ci(Yi|Y−i) = µ(Y ) ∩Xi. Then

(a) The beliefs {µi}i∈I are correct given the choice functions {Ci}i∈I .

(b) The choice functions {Ci}i∈I are optimal given the beliefs {µi}i∈I if and only if for each

Y ⊆ X, µ(Y ) is nonstrategically individually rational.

Our algorithm is initialized by picking some strict total order � on the collection of

nonstrategically individually rational outcomes. Then, at each each set of available contracts,

have each agent choose the contracts in the highest-ranked outcome available, and correctly

believe that the other agents will do the same:

µi(Y ) = µ(Y )

beliefs are common

= max
�
{Y ′|Y ′ ⊆ Y }

�-highest nonstrategically
IR outcome available

, Ci(Yi|Y−i) = µ(Y ) ∩Xi

choices match beliefs

. (3)

17Intuitively, when choice functions are optimal given correct beliefs, those beliefs must be common across
agents (Lemma 1). Then at any set of available contracts Z, no one can have an incentive to reject contracts
that are part of the common belief µ(Z), given that the other agents choose precisely the contracts in µ(Z).
In other words, µ(Z) must be nonstrategically individually rational.
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Intuitively, the order � used in this algorithm captures the agents’ common assumptions

about which outcomes will result from any joint deviation that might be proposed. Because

this order pins down beliefs at every set of available contracts, these beliefs are cross-set

consistent. Since these beliefs are common across agents and match choices, the algorithm

always generates a strategically consistent profile of choice functions and beliefs (Lemma 2).

3.3 Pareto Optimality and Characterization

Strategically consistent profiles are equilibrium objects. Some of them may be Pareto-

dominated by others. In particular, some profiles may encode coordination failures in which

agents choose a Pareto-dominated set of contracts, even though they could choose a Pareto-

improving outcome and still satisfy strategic consistency. Example 2 illustrates.

Example 2 (Roommate Problem Revisited). Consider the roommate problem from

Example 1 once more. There, we found a strategically consistent profile for which {x31} was

stable: Ci(Yi|Y−i) = µ(Y ) ∩Xi and µi(Y ) = µ(Y ), for each i ∈ {1, 2, 3} and

µ(∅) = ∅; µ({xij}) = {xij} for each i, j;

µ({x31, x23}) = µ({x12, x31}) = {x31}; µ({x12, x23}) = {x23}.

By symmetry, profiles also exist for which {x12} and {x23} are stable. In these profiles,

people find roommates, in line with the experience of most undergraduate students.

But there is also a strategically consistent profile for which the “autarky” outcome ∅ is

stable: {C0
i , µ

0
i }i∈I , where C0

i (Yi|Y−i) = µ0
i (Y ) = ∅ for all Y ⊆ X and i ∈ {1, 2, 3}. This

seems less plausible: Agents fail to coordinate on choosing a roommate agreement xij when

one is made available alongside ∅, even though this would be a Pareto improvement.

In contrast, no such coordination failures exist in {Ci, µi}i∈I (or the symmetric profiles

for which {x12} and {x23} are stable): At any set of available contracts, there is no outcome

that represents a Pareto improvement upon the outcome that the agents believe the others

will choose.18 This suggests a focus on the latter profiles. �

In this section, we first introduce a criterion on strategically consistent profiles ensuring

that agents’ beliefs select Pareto-undominated outcomes whenever possible. We then give

a “welfare theorem” characterizing the stable outcomes predicted by these profiles. As it

18That said, there is a coordination failure between agents 1 and 2 that makes them unwilling to choose
the contract they prefer from {x31, x12} in this profile. This is rationalized by a simple story: Agent 1
(correctly) believes that if he breaks his agreement with agent 3 to room with agent 2, agent 2 will then
leave to form an agreement with the newly roommateless agent 3. We explore the consequences of requiring
profiles to be rationalized by such forward induction reasoning in the Online Appendix.
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turns out, this also makes precise the connection between strategically consistent profiles

and Nash bargaining weights.

Recall that when choices are optimal, correct beliefs always select nonstrategically indi-

vidually rational subsets from each set of available contracts. Our main efficiency criterion

requires that they never select one of these subsets when it is Pareto-dominated by another.

Definition (Pareto Optimality). We say that a strategically consistent profile {Ci, µi}i∈I
satisfies Pareto optimality if for any nonstrategically individually rational Y, Z ⊆ X such

that ui(Y ) ≥ ui(Z) for all i ∈ I and ui(Y ) > ui(Z) for some i ∈ I, we have µi(Y ∪ Z) 6= Z

for each i ∈ I.

Theorem 3 shows that strategically consistent profiles that satisfy Pareto optimality are

easy to find, simply by using our algorithm (3) with an order � that is structured so that the

agents’ common beliefs solve a social planner’s problem. Formally, we say that a strict total

order �φ on the nonstrategically individually rational outcomesM is induced by φ : RI
+ → R

if φ((ui(Y ))i∈I) > φ((ui(Z))i∈I) implies Y �φ Z. As Lemma 8 in the Appendix shows, each

increasing φ induces an order �φ. We can interpret φ (and the �φ it induces) as describing

the way that agents base their beliefs about other agents’ choices on the payoffs all agents

will receive from those choices.

Theorem 3 (Pareto-Optimal Profiles). Let φ : RI
+ → R be a strictly increasing function.

i. For any strict total order �φ induced by φ, the profile {Cφ
i , µ

φ
i }i∈I constructed from �φ

using the algorithm (3) is strategically consistent and satisfies Pareto optimality.

ii. The common belief µφ in {Cφ
i , µ

φ
i }i∈I is the solution to a social planner’s problem: For

all i ∈ I and Z ⊆ X,

µφi (Z) ∈ arg max
S⊆Z

φ((ui(S))i∈I) s.t. Ĉj(Sj|S−j) = Sj ∀j ∈ I. (4)

The intuition for Theorem 3 is straightforward. Since φ is strictly increasing, �φ ranks

Y ahead of Z whenever Y is a Pareto improvement on Z. Hence, the beliefs constructed by

the algorithm never select a Pareto-inferior outcome when a Pareto-superior one is available

(i). In fact, the construction of �φ ensures that they solve the social planner’s problem (4)

(and do so uniquely if there are no ties) (ii).

Theorem 3 shows that beliefs are part of a strategically consistent profile if, at any set

of available agreements, they maximize a social welfare function subject to the constraint

that no agent can profit by vetoing contracts. This provides one direction of a “welfare the-

orem” for strategic consistency (Theorem 4): outcomes that are stable for some strategically

consistent profile satisfying Pareto optimality are those on a constrained Pareto frontier.
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Theorem 4 (Welfare Theorem for Strategic Consistency). There is a strategically

consistent profile satisfying Pareto optimality for which Y ⊆ X is stable if and only if Y is

Pareto efficient among the nonstrategically individually rational outcomes.

Theorem 4 parallels welfare theorem-like results in the matching literature with transfer-

able utility (e.g., with substitutability, Hatfield et al. (2013, Theorems 2-6); with complemen-

tarity, Rostek and Yoder (2020, Proposition 3 and Theorem 2)). Rather than decentralizing

an efficient outcome through the use of competitive equilibrium prices, Theorem 4 shows that

such outcomes can be decentralized by a correct and consistent profile of beliefs. This allows

it to apply even to nontransferable utility settings, and without the conditions on preferences

or market structure that are, in general, necessary for competitive equilibrium prices to ex-

ist.19 Example 3 illustrates in a many-to-one matching model with both complementarity

and substitutability, where the standard, nonstrategic approach to choice does not yield a

stable outcome.

Example 3 (Labor Markets with Complementarities). Consider a labor market with

two workers, Alice and Bob, and two firms, 1 and 2: I = {a, b, 1, 2}. Employment contracts

are standardized, i.e., each is completely characterized by the worker-firm pair it involves:

X = {xa1, xa2, xb1, xb2} and N(xij) = {i, j} for each i ∈ {a, b} and j ∈ {1, 2}.
Workers can only work for one firm (ui({xi1, xi2}) < ui(∅) for each i ∈ {a, b}), and

there are no externalities. Both workers prefer any employment to unemployment, but Alice

prefers firm 1, while Bob prefers firm 2: ua({xa1}) > ua({xa2}) and ub({xb2}) > ub({xb1}).
Firm 2 wants to hire one worker (u2({xa2, xb2}) < u2(∅)), and would prefer it to be Alice:

u2({xa2}) > u2({xb2}). Firm 1 could hire both workers, but is only willing to hire Alice if it

also hires Bob: u1({xa1, xb1}) > u1({xb1}) > u1(∅) > u1({xa1}).

1 : fxa1; xb1g ≻1 xb1 ≻1 ; 2 : xa2 ≻2 xb2 ≻2 ;

a : xa1 ≻a xa2 ≻a ; b : xb2 ≻b xb1 ≻b ;

Firms

Workers

xa1 xb2

xb1 xa2

Figure 2: A visual description of the environment in Example 3.

Like many matching environments with both complementarity (between xa1 and xb1)

and substitutability (among other contracts), this example has no stable outcome when

19In particular, the “if” part does not follow immediately from the separating hyperplane theorem and
Theorem 3, since the utility possibility set is finite, rather than convex.
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choice is nonstrategic.20 But when choice is strategically consistent, and agents can over-

come coordination failures that result in Pareto-dominated outcomes, Theorem 4 shows that

three outcomes can be stable: {xb2}, {xa2, xb1}, and {xa1, xb1}. Each is nonstrategically

individually rational, and (unlike ∅, {xa2}, and {xb1}) is not Pareto-dominated by another

nonstrategically individually rational outcome.21

We describe one such profile, for which {xa2, xb1} is stable. To avoid assigning cardinal

values to agents’ payoffs, we start with a strict total order that never ranks an outcome

below another that it Pareto dominates: e.g.,

{xa2, xb1} � {xb2} � {xa1, xb1} � {xb1} � {xa2} � ∅. (5)

Given this order, the algorithm in (3) constructs a strategically consistent profile {Ci, µi}i∈I
satisfying Pareto optimality and forward induction for which {xa2, xb1} is stable.22 �

Pareto Optimality and Bargaining Weights

Using Theorem 3 to construct a profile {Cφ
i , µ

φ
i }i∈I requires us to first pick a social welfare

function φ. We may wish to do so in a way that ensures that the order �φ is not sensitive

to specifics of the agents’ utility functions that do not affect their incentives. In particular,

we might desire the solution to (4) to be invariant under rescaling of the agents’ utility

functions. As is well known, this pins down the social welfare function in Theorem 3 as the

familiar asymmetric Nash product. Formally, we say that φ : RI
+ → R is scale invariant if

for any a, x, y ∈ RI
+, φ(x) > φ(y)⇔ φ((aixi)i∈I) > φ((aiyi)i∈I).

Lemma 3. If φ : RI
+ → R is continuous, strictly increasing, and scale invariant, then there

is some α ∈ ∆(I) such that φ(x) ≥ φ(y)⇔
∏

i∈I x
αi
i ≥

∏
i∈I y

αi
i .

We emphasize that even when a strategically consistent profile is pinned down by maxi-

mizing a Nash product (as we do in Rostek and Yoder (2025) and Section S.1 in the Online

20With nonstrategic choice, each individually rational outcome is blocked: ∅ is blocked, e.g., by xa2; {xa2}
is blocked by, e.g., {xb1}; {xa2, xb1} is blocked by {xa1, xb1}; {xa1, xb1} is blocked by {xb2}; {xb2} is blocked
by {xa2}; and {xa2} is blocked by {xa1, xb1}.

21In fact, since this setting has no externalities, Theorem 3 shows that each can be decentralized by beliefs
that not only avoid coordination failure (i.e., satisfy Pareto optimality), but are robust to forward induction
reasoning of the sort considered in the Online Appendix.

22Specifically, this profile {Ci, µi}i∈I is given by Ci(Yi|Y−i) = µ(Y ) ∪Xi and µi(Y ) = µ(Y ), for

µ({xa1, xa2}) = µ({xa2}) = {xa2}; µ(Y ) = {xa2, xb1} if {xa2, xb1} ⊆ Y ;
µ({xb1}) = {xb1}; µ(∅) = µ({xa1}) = ∅;

µ({xa1, xb1}) = {xa1, xb1};
µ({xa1, xb1, xb2}) = µ({xa1, xa2, xb2}) = µ({xb1, xb2})

= µ({xa2, xb2}) = µ({xa1, xb2}) = µ({xb2})
= {xb2}.
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Appendix), the interpretation is not that the outcome is determined through a multilateral

Nash bargaining among all agents over all contracts. Instead, the outcome is determined by

the absence of deviations by groups of agents to form new contracts with one another, given

beliefs that are refined by Pareto optimality.23

By varying the social welfare function φ — e.g., by changing the bargaining weights α

in a Nash product — we can construct a profile that is relatively more favorable to some

agents, and less favorable to others. This highlights the fact that strategically consistent

profiles play the same role in matching-theoretic stability that bargaining weights do in

other models of bargaining (e.g., Nash-in-Nash (Collard-Wexler et al. (2019)) bargaining):

There are several possible profiles of weights/choice functions and beliefs, and given any

such profile, the bargaining solution/stability pins down a unique prediction. Theorem 3

and Lemma 3 formalize this connection in the case of profiles that satisfy Pareto optimality;

in Section S.1 of the Online Appendix, we illustrate the connection in the context of Example

3. In a companion paper (Rostek and Yoder (2025)), we show that this facilitates an approach

to counterfactual analysis similar to those used with these other models (e.g., Ho and Lee

(2017, 2019)).24

3.4 Discussion

Existence

Our existence results allow the application of matching-theoretic tools in new environ-

ments where agents’ preferences may feature both substitutability and complementarity,

agreements may have externalities, and/or more than two agents may be involved in the

same contract. In particular, they employ the usual matching-theoretic approach, using a

standard cooperative solution concept (stability) to pin down outcomes given choice func-

tions. The key innovation that allows us to guarantee the existence of stable outcomes is to

use noncooperative reasoning to determine these choice functions, thus ensuring that they

are based on correct and consistent beliefs. This noncooperative reasoning cannot make pre-

dictions about outcomes on its own, because it only describes the way agents would choose

from any set of contracts that might be under negotiation. Instead, applying cooperative

reasoning (in the form of stability) to these choice functions makes it possible to predict the

23We discuss this connection in more detail in Rostek and Yoder (2025).
24Specifically, we can first use the data to identify the agents’ preferences, the observed outcome Y ∗, and

the φ (or, when φ is pinned down by scale invariance (Lemma 3), a vector of Nash weights α) such that Y ∗ is

stable for {Cφi , µ
φ
i }i∈I . Then, modify the environment by applying the treatment of interest (e.g., a merger

or regulation). Finally, derive the profile associated with φ in the modified environment, and compute its
unique stable outcome.
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actual outcomes.

Profiles vs. Outcomes

The object pinned down by strategic consistency is not an outcome, but rather a profile of

choice functions, each of which implies a unique stable outcome (Theorem 1). In particular,

our results do not simply require the set of contracts that an agent agrees to sign to be a best

response to those agreed to by others in the stable outcome. Rather, strategic consistency

requires agents’ choice functions to specify sets of contracts that are best responses to others’

behavior at each possible set of available contracts; that is, at every set of available contracts

(i.e., every set that might be discussed in a negotiation), the agents’ choices must form a

Nash equilibrium of a game where each agent chooses a set of contracts, and contracts go into

effect if they are chosen by each agent they name.25 Thus, a profile of strategically consistent

choice functions can be interpreted as collections of equilibria of a contract-announcement

game. (We formalize this connection in Section S.5 of the Online Appendix.) Stability

then selects from among outcomes of this game by pinning down an outcome that is robust

to both individual and joint deviations given those equilibrium choice functions. In other

words, rather than being robust only to noncooperative deviations for each set of contracts,

outcomes that are stable given strategically consistent behavior are robust to cooperative

deviations across sets of contracts that agents evaluate strategically (i.e., given correct beliefs,

rather than nonstrategically).

Beliefs and Perfection/Trembles

The beliefs involved in a strategically consistent profile might appear “brittle”, in the

sense that at a given set of available contracts, the equilibrium is not robust to trembles. In

Part 2 of Example 1, for instance, it is optimal for agent 2 to choose the agreement x12 with

agent 1 if he thinks that there is a small probability that agent 1 will also choose it. And if

agent 2 does choose x12, then it is optimal for agent 1 to choose it as well. If we then consider

trembles among the other agents, we are left back where we started with nonstrategic choice

and nonexistence.

But with strategic consistency, beliefs are a profile: They need not be formed in isolation

at every set of available contracts the way that the “tremble” thought experiment requires.

Instead, the agents can reason that these “trembling” beliefs lead to inconsistency across

sets of available contracts, and rule them out.

25This contract-announcement game generalizes the link-announcement game discussed in, e.g., Myerson
(1991) and Jackson (2010). Strategically consistent profiles always exist precisely because this game always
has a Nash equilibrium in pure strategies.
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Strategic vs. Nonstrategic Approach to Choice

Our approach is to work with the standard stability concept — just applied to choice

functions that are determined by a fixed point relationship with agents’ beliefs about others’

choices rather than pinned down as solutions to single-agent decision problems. The key

insight of this paper is that this allows one to make predictions in any environment, regardless

of agents’ preferences, externalities, or the structure of the market. However, one might

also wonder whether there is anything to be gained by taking the strategically consistent

approach in settings where the standard, nonstrategic approach can predict stable outcomes.

The answer is yes.

First, strategic consistency allows us to attribute the multiplicity of stable outcomes to

a multiplicity of beliefs that agents may have about the way others will react to blocking

proposals.26 Each of these profiles of beliefs can be interpreted as a description of the way

that bargaining power is distributed among the agents in equilibrium. In fact, when we rule

out coordination failure using Pareto optimality, we can regard Nash bargaining weights

as sufficient statistics for the bargaining power described by beliefs. This is precisely the

approach we take in the companion paper, Rostek and Yoder (2025).

Second, even when stable outcomes do exist with the standard approach, strategic con-

sistency can capture plausible outcomes that are ruled out by nonstrategic choice, a point

that we illustrate with Example S.1 in the Online Appendix.27

Third, strategic consistency allows us to make new predictions about counterfactual

outcomes — a point we explore in the next section.

Stability and Bargaining Theory

Theorem 3 can be thought of as a microfoundation for agents’ beliefs by appealing to

bargaining theory. If we parameterize agents’ bargaining power, as in, e.g., Nash (1950),

agents’ beliefs, and thus (by Theorem 1) the stable outcome, can be uniquely pinned down;

see Rostek and Yoder (2025) and Section S.1 in the Online Appendix. (Moreover, we can

identify that outcome without identifying the full profile of choice functions and beliefs.)

Alternatively, with Theorem 3, we can think of strategic consistency as a (cooperative)

26For an alternative interpretation of this multiplicity based on procedural fairness (the order of proposals
in a modified deferred acceptance algorithm), see Dworczak (2021).

27The possibility of compelling outcomes that are ruled out by stability has been noted before. In partic-
ular, a variation of stability, weak setwise stability (Klaus and Walzl (2009)) does not consider blocks where
the participating agents’ nonstrategic choices do not coincide (as in Example S.1). Formally, a blocking
proposal Z is a weak setwise block of Y if each agent who participates in the block (nonstrategically) chooses
the same set of contracts: for all i ∈ N(Z \Y ), Ĉi(Zi∪Yi|Z−i∪Y−i) = Zi. (Such a proposal corresponds to a
block Z ′ = Z \ Y .) Strategic consistency instead considers all blocks, but rules out disagreements about the
outcome of a block by allowing agents’ choices to be endogenously determined given beliefs that are correct.
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microfoundation for a type of Nash bargaining solution in which outside options are endoge-

nous (since the payoffs that an outcome must provide the agents in order to be individually

rational depends on the payoffs they can get by dropping the agreements that they make).

Other Refinements

Our main characterization result (Theorem 4) describes the set of outcomes that are

pinned down by strategically consistent profiles that satisfy Pareto optimality. But one can

consider alternative restrictions on beliefs that may be attractive in different applications.

In the Online Appendix, we consider two of them: evaluating the credibility of deviations

by employing forward induction reasoning (Section S.3.1) and requiring robustness to non-

strategic deviations (Section S.3.2). Like Pareto optimality, each places additional structure

on the order � used to run the algorithm (3) and pin down the agents’ (correct and cross-set

consistent) beliefs. This additional structure captures the class of blocking deviations that

the refinement requires agents to believe are plausible.

4 Applications

Here, we highlight how we can use our results in three applications that have not been

traditionally studied using matching-theoretic stability: network formation, environments

with externalities from downstream competition, and legislative bargaining.

Network Formation

By modeling links between agents as bilateral contracts, our results can be applied to

network formation settings where link formation has externalities on other agents, such

as free trade agreement formation (e.g., Furusawa and Konishi (2007)) and joint venture

formation among oligopolists (e.g., Goyal and Joshi (2003)). In these settings, arguably

the most common solution concept used in the literature is pairwise stability (Jackson and

Wolinsky (1996)), which selects networks that are robust to deviations by a pair of agents

that add a link between them, and deviations by an individual agent that remove one of

his links. This is a subset of the changes to the network considered by matching-theoretic

stability, which also includes those in which agents substitute between links as well as those

where agents add multiple links at the same time. However, pairwise stability is able to make

predictions under much more general conditions (e.g., Calvó-Armengol and İlkılıç (2009))

than those known to ensure the existence of matching-theoretically stable outcomes.
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But in Theorems 2-4, we show that we can ensure robustness of sets of agreements, in-

cluding graphs or coexisting coalitions, to the full class of deviations considered by matching-

theoretic stability, even without conditions on preferences or externalities. Instead of ruling

out some of these deviations exogenously, strategic consistency endogenously determines

which of them matter. As we illustrate in Example 4, this also allows us to make predictions

in canonical network formation environments in which no pairwise stable outcome exists.

Example 4 (Trading on a Network (Jackson and Watts, 2002)). Consider the fol-

lowing environment from Jackson and Watts (2002). There are two divisible goods, x and

y, and N consumers with identical symmetric Cobb-Douglas preferences over those goods.

Before they learn their endowments, the consumers form links with one another; each link

costs c > 0 for the two consumers that it connects. Once the network is formed, they each

independently receive endowments (1, 0) and (0, 1) with equal probability, and trade them in

separate competitive markets on each connected component of the network. Hence, adding

a link benefits an agent by reducing the probability that he faces unfavorable terms of trade

because most of the other agents on his connected component have the same endowment as

he does.28

Jackson and Watts (2002) show that when c = 5/96 and N ≥ 4, no pairwise stable

outcome (and hence, when choice is nonstrategic, no stable outcome) exists.29 If no agent

can benefit by dropping a link, each connected component must be a tree: severing a loop

does not change the equilibrium on the component, but saves c for the agents who sever

their link. Moreover, if an agent has more than one link, each must be to agents that also

have multiple links: otherwise, the benefit of keeping the link is lower than 5/96. Thus, a

network does not provide agents with incentives to sever links — and hence, in the language

of our paper, is nonstrategically individually rational — precisely when it is a collection of

connected pairs. But no such network can be pairwise stable: each agent would gain more

than 5/96 by forming a link with another connected pair.

Theorem 2 shows that strategic consistency resolves this nonexistence problem by requir-

ing each agent’s beliefs about how others would respond to linking proposals to be correct

and consistent across different sets of available links. Moreover, Theorem 4 shows that when

we focus on Pareto-optimal profiles, strategic consistency predicts exactly those outcomes

we would intuitively expect to see in this setting: networks consisting of connected pairs,

with no more than one isolated agent. �
28It also reduces the probability that he faces favorable terms of trade because most agents on his connected

component have the opposite endowment, but since preferences are convex, this has a smaller effect on his
payoffs.

29As discussed in Section 4, pairwise stability is weaker than matching-theoretic stability with nonstrategic
choice.
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Externalities from Downstream Competition

A large literature in industrial organization analyzes markets in which firms first form

agreements with suppliers, and then compete in an imperfectly competitive downstream mar-

ket. Examples include the formation of agreements between insurers and healthcare providers

(e.g., Ho and Lee (2017)); between television networks and distributors (e.g., Crawford and

Yurukoglu (2012)); and between medical device manufacturers and hospitals (e.g., Grennan

(2013)). Because they affect competition in the downstream market, these supplier relation-

ships have externalities: If one insurer/TV distributor/hospital agrees to a contract with a

provider/TV network/device manufacturer, it affects the incentives of other firms to form

their own contracts. Clearly, these settings can be embedded into a general matching with

contracts model like the one we study.

But the presence of externalities has made it challenging to apply matching theory to

analyze the formation of these agreements. Instead, a popular solution concept used in

these settings is Nash-in-Nash bargaining (Horn and Wolinsky (1988)): a Nash equilibrium

in Nash bargains. Since it pins down the division of surplus between firms, and does not

require strong conditions on preferences for existence, this framework has proven extremely

useful in empirical work.

Like pairwise stability in the network formation context, the Nash-in-Nash solution can

offer predictions in settings where the standard approach to stability does not because it

considers a less expansive set of changes to the set of agreements.30 This has motivated

recent papers such as Ho and Lee (2019) and Liebman (2018) to extend the Nash-in-Nash

concept to settings where other types of deviations, such as those to exclude a healthcare

provider from an insurer’s network, are important. While our results do not explicitly

extend the Nash-in-Nash solution, they contribute to this literature by showing how we

can consider robustness to all joint deviations by using matching-theoretic stability, even in

settings where externalities are prevalent and preferences do not satisfy substitutability or

complementarity conditions. Moreover, our analysis in Rostek and Yoder (2025) suggests

techniques for using matching-theoretic stability, along with strategic consistency, to make

counterfactual predictions in a similar way to Nash-in-Nash.

Legislative Bargaining

A rich political economy literature considers settings where legislators bargain multilat-

erally over which of several policies to enact. Following Baron and Ferejohn (1989), this

30In particular, Nash-in-Nash does not consider, e.g., deviations to substitute between agreements with
different other agents, add or remove multiple agreements with different agents at the same time, or remove
some agreements with a counterparty while keeping others; matching-theoretic stability considers all of these.
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literature generally takes a noncooperative approach, modeling a negotiation as a dynamic

game where legislators take turns proposing a division of surplus which is then subjected to

a majoritarian vote. As Ali et al. (2019) show, the outcome of this multilateral bargaining

protocol is sensitive to its extensive form, which can dramatically change the division of

surplus predicted by the Baron and Ferejohn (1989) model.

Our results allow for predictions in environments where agents form multiple multilateral

agreements (such as legislative bargaining) without relying on the specifics of the bargaining

process. Specifically, suppose that we let contracts represent possible agreements to pass bills

among (for concreteness) a majority of legislators. Then our main characterization theorem,

Theorem 4, allows us to use matching-theoretic stability to predict which of those agreements

will form. Moreover, the counterfactual analysis that we discuss in the companion paper,

Rostek and Yoder (2025), allows us to predict how an observed outcome will change due to

changes in, e.g., legislative procedure or the political environment.

4.1 New Comparative Statics with Strategic Consistency

Strategic consistency allows new comparative statics relative to the standard nonstrategic

approach. In general, we can consider two types of changes to the environment.

Removal of Contracts

Suppose that one or more contracts is rendered unavailable (e.g., through regulation).

This comparative static is not always feasible with the standard, nonstrategic approach to

choice: We can compute a new set of stable outcomes after contracts are removed from

the environment, but this set may be empty, since the existence of a stable outcome is

not guaranteed. Even when it is not, we do not know which of the new stable outcomes

will result, because that depends on the sequence of deviations that follows. But with a

strategically consistent profile, there is always a new stable outcome, and it is independent

of the path taken to get to it: Since agents’ beliefs are cross-set consistent, any sequence of

deviations following the contract’s removal must lead to the same outcome. In particular,

we can simply restrict the domain of beliefs and choice functions to sets that do not include

the removed contracts, and recover the new outcome from the agents’ common belief when

all remaining contracts are available (as in Corollary 1).

More General Changes

Strategic consistency always pins down the way that beliefs (and hence outcomes) change

when one or more contracts is removed from the environment. But as we illustrate in Rostek
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and Yoder (2025), if we have a map between profiles (and hence outcomes) in different

environments — such as the one provided by using Theorem 3 to identify those profiles

with a fixed welfare function — we can pin down the impact on beliefs and outcomes of

more general changes to the environment: changes to the set of contracts X (e.g., replacing

intermediated trades with direct ones), changes to the set of agents N(x) named by a contract

(e.g., giving a regulator the ability to veto it), or changes to the agents’ payoff functions (e.g.,

through common ownership of two firms, the imposition of a tax, or the introduction of other

types of externalities).

5 Conclusion

This paper takes a step towards the study of stable outcomes in applications where

agents’ preferences over agreements may exhibit both complementarities and substitutabil-

ities, agreements can have externalities and be multilateral, and the market structure de-

scribed by those agreements can be arbitrary. Our results suggest there might be new

possibilities for the use of matching-theoretic models in applied work where the endogeneity

of the observed agreements is of interest.
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Appendix

Proof of Lemma 1 For each Y ⊆ X, let C(Y ) := ∩i∈I(Ci(Yi|Y−i) ∪ Y−i). For each i ∈ I
and Y ⊆ X, since Ci is optimal given µi, Ci(Yi|Y−i) ⊆ µi(Y ), and since µi is correct given

{Cj}j 6=i, µi(Y ) = C−i(Y ). Then for each i ∈ I, Ci(Yi|Y−i) ⊆ C−i(Y ), and hence

Ci(Yi|Y−i) = Ci(Yi|Y−i) ∩ C−i(Y ) = ((Ci(Yi|Y−i) ∪ Y−i) ∩Xi) ∩ C−i(Y ) = Xi ∩ C(Y ). (6)

Then for each j ∈ I and Y ⊆ X, C−j(Y ) = C(Y ): By definition, C(Y ) = (Cj(Yj|Y−j) ∪
Y−j) ∩ C−j(Y ), so C(Y ) ⊆ C−j(Y ). Now suppose x ∈ C−j(Y ). By assumption, |N(x)| ≥ 2,

so we must have x ∈ Ci(Yi|Y−i) for some i 6= j. Since Ci(Yi|Y−i) = Xi ∩ C(Y ) ⊆ C(Y ), it

follows that C−j(Y ) ⊆ C(Y ).

Then since beliefs are correct, for all i ∈ I and Y ⊆ X, µi(Y ) = C(Y ); (i) follows for

µ(Y ) = C(Y ), and thus (ii) follows from (6). �

Lemma 4 adds to Lemma 1 by showing that given correctness and optimality, cross-

set consistency is equivalent to the weak axiom (or equivalently, the irrelevance of rejected

contracts condition (Alva (2018))) on the agents’ common beliefs.

Lemma 4. Suppose that the choice functions {Ci}i∈I are optimal given beliefs {µi}i∈I , and

the beliefs {µi}i∈I are correct given choice functions {Ci}i∈I . Then {µi}i∈I are cross-set

consistent given {Ci}i∈I if and only if for each i ∈ I, Y ⊇ Z ⊇ µi(Y ) implies µi(Y ) = µi(Z).

Proof. By Lemma 1, for each i, j ∈ I and Y ⊆ X, µi(Y ) = µj(Y ) = µ(Y ) and Cj(Yj|Y−j) =

µ(Y ) ∩ Xj. Hence, for each Y, Z ⊆ X, Y ⊇ Z ⊇ Cj(Yj|Y−j) for each j ∈ I ⇔ Y ⊇
Z ⊇ (

⋃
j∈I µ(Y ) ∩ Xj) = µ(Y ). Then since µi(S) = µj(S) = µ(S) for each i, j ∈ I and

S ⊆ X, {µi}i∈I are cross-set consistent given {Ci}i∈I if and only if for each Y, Z ⊆ X,

Y ⊇ Z ⊇ µ(Y )⇒ µ(Y ) = µ(Z).
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Proof of Theorem 1 (Strategic Consistency and Stability) Let {Ci, µi}i∈I be a strate-

gically consistent profile. By Lemma 1, for each i, j ∈ I and S ⊆ X, µi(S) = µj(S) = µ(S)

and Cj(Sj|S−j) = µ(S) ∩Xj.

Now for any Z ⊆ X, X ⊇ µ(X) ∪ Z ⊇ µ(X). Then by Lemma 4, µ(µ(X) ∪ Z) = µ(X).

Then by Lemma 1 (ii), for each Z ⊆ X\µ(X) and each i ∈ I, Ci((µ(X)∪Z)i|(µ(X)∪Z)−i) =

µ(µ(X) ∪ Z) ∩Xi = µ(X) ∩Xi. It follows that µ(X) is unblocked and (by setting Z = ∅)
individually rational. �

Proof of Corollary 1 (Stability and Beliefs) Follows immediately from the proof of

Theorem 1. �

Lemma 5 shows that optimal choices from Y given beliefs µi (as in a strategically con-

sistent profile) are the same as nonstrategic choices from the set of contracts µi(Y ) that an

agent believes the other agents will choose from Y .

Lemma 5. Ci is optimal given µi if and only if Ci(Yi|Y−i) = Ĉi(µi(Y ) ∩ Xi|µi(Y ) ∩ X−i)
for all Y ⊆ X.

Proof. From (1), we have Ĉi(µi(Y )i|µi(Y )−i) = arg maxS⊆µi(Y )i ui(S ∪ µi(Y )−i); the state-

ment follows immediately from the definition of optimality of Ci given µi.

Proof of Lemma 2 (Converse of Lemma 1) (a): From condition (ii), for each i ∈ I and

Y ⊆ X,

C−i(Y ) :=
⋂
j 6=i

(Cj(Yj|Y−j) ∪ Y−j) =
⋂
j 6=i

((µi(Y ) ∩Xj) ∪ Y−j). (7)

Then µi(Y ) = C−i(Y ): If x ∈ C−i(Y ), then since |N(x)| ≥ 2, we must have x ∈ Xj for some

j 6= i, and hence, by (7), x ∈ µi(Y )∩Xj ⊆ µi(Y ); it follows that µi(Y ) ⊇ C−i(Y ). Moreover,

since µi(Y ) ⊆ Y , µi(Y ) ⊆ ((µi(Y ) ∩Xj) ∪ Y−j) for each j, and so by (7), µi(Y ) ⊆ C−i(Y ).

Hence, {µi}i∈I are correct given {Ci}i∈I .
(b): (Beliefs are nonstrategically IR ⇒ Choices are optimal) Suppose that for each Y ⊆

X, µ(Y ) is nonstrategically individually rational. Then by definition, for each i ∈ I and

Y ⊆ X, Ĉi(µ(Y )∩Xi|µ(Y )∩X−i) = µ(Y )∩Xi = Ci(Yi|Y−i). It follows from Lemma 5 that

{Ci}i∈I are optimal given {µi}i∈I .
(Choices are optimal⇒ Beliefs are nonstrategically IR) Suppose that {Ci}i∈I are optimal

given {µi}i∈I . For each Y ⊆ X and i ∈ I, we have µi(Y ) ∩ Xi = Ci(Yi|Y−i) (by condition

(ii)) and Ci(Yi|Y−i) = Ĉi(µ(Y ) ∩Xi|µ(Y ) ∩X−i) (by Lemma 5). Then for each Y ⊆ X and

i ∈ I, µ(Y ) ∩Xi = Ĉi(µ(Y ) ∩Xi|µ(Y ) ∩X−i), and so µ(Y ) is nonstrategically individually

rational. �
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Lemma 6 shows that our algorithm (3) always constructs a strategically consistent profile.

Lemma 6 (Construction Algorithm). For any strict total order � on the set M =

{Y ⊆ X|Ĉi(Yi|Y−i) = Yi for each i ∈ I} of nonstrategically individually rational outcomes,

the profile of choice functions and beliefs {Ci, µi}i∈I defined in (3) is strategically consistent.

Proof. First note that {Ci, µi}i∈I is well-defined: Since {Ĉi}i∈I are nonstrategic, we have

Ĉi(∅|∅) = ∅ for each i ∈ I, and so ∅ ∈ M. Then for each Y ⊆ X, {Y ′|Y ′ ⊆ Y } contains at

least one element of M, and so µ(Y ) = max�{Y ′|Y ′ ⊆ Y } is well-defined for each Y .

By construction, for each i, j ∈ I and Y ⊆ X, (i) µi(Y ) = µj(Y ) := µ(Y ), and (ii)

Ci(Yi|Y−i) = µ(Y )∩Xi. Then by Lemma 2 (a), {µi}i∈I are correct given {Ci}i∈I . And since

µi(Y ) ∈M for each Y ⊆ X, by Lemma 2 (b), {Ci}i∈I are optimal given {µi}i∈I .
To show cross-set consistency, suppose µ(Y ) ⊆ Z ⊆ Y for some i ∈ I and Y, Z ⊆ X.

Then by construction, µ(Y ) � Y ′ for each Y ′ ⊆ Y , and hence for each Y ′ ⊆ Z. Then by

construction, µ(Y ) = µ(Z). It follows from Lemma 4 that {µi}i∈I are cross-set consistent

given {Ci}i∈I .

Lemma 7 (Strategically Consistent Profiles: Characterization). There is a strategi-

cally consistent profile for which the outcome Y ⊆ X is stable if and only if Y is nonstrate-

gically individually rational.

Proof. (Only if) Suppose S is stable for the strategically consistent profile {Ci, µi}i∈I . By

Corollary 1, S = µi(X) for each i ∈ I. Since {Ci, µi}i∈I is strategically consistent, by Lemma

1, for all i,∈ I and Y ⊆ X, µi(Y ) = µj(Y ) = µ(Y ) and Ci(Yi|Y−i) = µ(Y ) ∩ Xi. Then by

Lemma 2 (b), S is nonstrategically individually rational.

(If) Suppose S is nonstrategically individually rational. Choose any strict total order �
on the set M = {Y ⊆ X|Ĉi(Yi|Y−i) = Yi for each i ∈ I} of nonstrategically individually

rational outcomes which ranks S highest. Let {Ci, µi}i∈I be the profile of choice functions

and beliefs constructed according to (3). By Lemma 6, {Ci, µi}i∈I is strategically consistent.

Since S � Y for all Y ∈ M, S = max�{Y ′|Y ′ ⊆ X} = µi(X) for each i ∈ I. Then by

Corollary 1, µ(X) = S is uniquely stable for {Ci, µi}i∈I .

Proof of Theorem 2 (Existence of Strategically Consistent Profiles) By definition,

Ĉi(∅|∅) = ∅ for each i ∈ I. Hence, ∅ is nonstrategically individually rational; existence

follows from the “if” part of Lemma 7. �

Lemma 8. If φ : RI
+ → R is a strictly increasing function, then for any Y ∈ arg maxS∈M φ((ui(S))i∈I),

there is a strict total order �φ that is induced by φ which ranks Y highest.
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Proof. Let M = {Z ⊆ X|Ĉi(Zi|Z−i) = Zi for each i ∈ I} denote the set of nonstrategically

individually rational outcomes, and label its elements according to the sequence {Y n}|M|n=1,

constructed recursively as follows: To begin, let Y 1 = Y ∈ arg maxS∈M φ((ui(S))i∈I). Then,

given elements {Y n}mn=1, choose Y m+1 ∈ arg maxS∈M\{Y n}mn=1
φ((ui(S))i∈I). (The set of max-

imizers is nonempty since X (and hence M ⊆ 2X) is finite.) This construction implies

that whenever φ((ui(Y
n))i∈I) > φ((ui(Y

m))i∈I), we must have n < m: If n > m, then

Y n ∈ M \ {Y k}m−1k=1 , and so Y m could not have been chosen as the mth element of the

sequence.

Now define the order �φ on M as follows: Y n �φ Y m ⇔ n < m. Since {Y n}mn=1 =M,

we can label any two elements of M as Y n and Y m for some n,m. If φ((ui(Y
n))i∈I) >

φ((ui(Y
m))i∈I), we must have n < m, and hence Y n �φ Y m. So �φ is induced by φ, as

desired.

Proof of Theorem 3 (Pareto-Optimal Profiles) (i): Strategic consistency follows from

Lemma 6. For Pareto optimality, suppose that Y, Z ⊆ X are such that ui(Y ) ≥ ui(Z) for all

i ∈ I and ui(Y ) > ui(Z) for some i ∈ I. Then since φ is strictly increasing, we must have

φ((ui(Y ))i∈I) > φ((ui(Z))i∈I). Thus, since �φ is induced by φ, we have Y �φ Z. Then the

algorithm (3) yields µφi (Y ∪ Z) = µφ(Y ∪ Z) = max�φ{Y ′|Y ′ ⊆ Y ∪ Z} 6= Z for each i ∈ I.

It follows that {Cφ
i , µ

φ
i }i∈I satisfies Pareto optimality.

(ii): For each i ∈ I and Z ⊆ X, we have µφi (Z) = µφ(Z) = max�φ{S|S ⊆ Z} from

(3). Then µφi (Z) �φ s for all S ⊆ Z. Since �φ is induced by φ, it follows that for all

S ⊆ Z, φ((uj(µ
φ
i (Z)))j∈I) ≥ φ((uj(S))j∈I): If not, then φ((uj(µ

φ
i (Z)))j∈I) < φ((uj(S))j∈I),

and hence µφi (Z) ≺φ S. It follows that µφi (Z) solves (4). �

Proof of Theorem 4 (Welfare Theorem for Strategic Consistency) (Only if) Suppose

that Y is stable for a strategically consistent profile {Ci, µi}i∈I that satisfies Pareto optimal-

ity. By Lemma 7, Y is nonstrategically individually rational. Suppose there is another

nonstrategically individually rational outcome Z that Pareto-dominates Y : ui(Z) ≥ ui(Y )

for all i ∈ I and ui(Z) > ui(Y ) for some i ∈ I. Then since {Ci, µi}i∈I satisfies Pareto

optimality, µi(Z ∪ Y ) = Z for each i ∈ I. Then we must have µi(X) 6= Y for each i ∈ I;

otherwise, cross-set consistency would imply µi(Z ∪ Y ) = Y 6= Z. Then by Corollary 1, Y

is not stable for {Ci, µi}i∈I , a contradiction.

(If) Denote byM the nonstrategically individually rational outcomes, and suppose that

Y is Pareto efficient among these outcomes: there exists no S ∈M such that ui(S) ≥ ui(Y )

for all i ∈ I and ui(S) > ui(Y ) for some i ∈ I. Then for every S ∈M, either ui(S) = ui(Y )
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for all i ∈ I or ui(S) < ui(Y ) for some i ∈ I. For each ρ < 0, define

φρ : RI
+ → R

x 7→

(∑
i∈I

(
xi

ui(Y )

)ρ)1/ρ

.

Each φρ is strictly increasing, since

∂φρ
∂xi

(x) =
xρ−1i

ui(Y )ρ

(∑
i∈I

(
xi

ui(Y )

)ρ)1/ρ−1

> 0 for each i ∈ I.

Now for any Z ∈M, we have

φρ((ui(Y ))i∈I)− φρ((ui(S))i∈I) = 1−

(∑
i∈I

(
ui(S)

ui(Y )

)ρ)1/ρ

;

lim
ρ→−∞

(φρ((ui(Y ))i∈I)− φρ((ui(S))i∈I)) = 1−min {ui(S)/ui(Y )}i∈I

< 0, if (ui(S))i∈I 6= (ui(Y ))i∈I .

Then for every S ∈M with (ui(Y ))i∈I 6= (ui(S))i∈I , there exists rS such that for all ρ < rS,

φρ((ui(Y ))i∈I) > φρ((ui(S))i∈I). Choose ρ∗ = minS∈M rS and let φ = φρ∗ ; it follows that

Y ∈ arg maxS∈M φ((ui(S))i∈I). Then by Lemma 8, there is a strict total order �φ that is

induced by φ and ranks Y highest, and by Theorem 3(i), the profile {Cφ
i , µ

φ
i }i∈I constructed

from �φ using the algorithm (3) is strategically consistent and satisfies Pareto optimality.

By (3), since �φ ranks Y highest, µi(X) = Y for each i ∈ I; it follows from Corollary 1 that

Y is stable for {Cφ
i , µ

φ
i }i∈I , as desired. �

Proof of Lemma 3 Follows from d’Aspremont and Gevers (2002) Theorem 4.17. �
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