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In this paper, we show that stable outcomes exist in matching environments with
complementarities, such as social media platforms or markets for patent licenses. Our
results apply to both nontransferable and transferable utility settings, and allow for
multilateral agreements and those with externalities. In particular, we show that stable
outcomes in these settings are characterized by the largest fixed point of a monotone
operator, and so can be found using an algorithm; in the nontransferable utility case,
this is a one-sided deferred acceptance algorithm, rather than a Gale–Shapley algo-
rithm. We also give a monotone comparative statics result as well as a comparative
static on the effect of bundling contracts together. These illustrate the impact of design
decisions, such as increased privacy protections on social media, or the use of antitrust
law to disallow patent pools, on stable outcomes.

KEYWORDS: Complementarities, matching with contracts, stability, contract design.

1. INTRODUCTION

IN MANY SETTINGS OF ECONOMIC INTEREST, agents negotiate sets of discrete agreements
with one another. When these agreements are substitutable, the matching literature gives
us ample tools to determine which sets of them are stable, or robust to renegotiation
(e.g., Gale and Shapley (1962), Kelso and Crawford (1982), Roth (1984), or Hatfield and
Milgrom (2005)).

However, many of these environments are characterized by complementarities. For in-
stance, complementarities are a defining feature of markets for patent licenses: If a firm
needs to secure licenses from multiple rightsholders in order to sell a given product, those
licenses are perfect complements (e.g., Shapiro (2000)). Similarly, licenses will be com-
plementary if they lower a firm’s marginal cost of production: Acquiring one will cause
a firm to produce more units of output, each of which will become cheaper to produce
after acquiring subsequent licenses. Complementarities also arise naturally among con-
nections between users of social media platforms like Facebook or LinkedIn. Each con-
nection gives users more frequent opportunities to interact, incentivizing increased use of
the platform—and hence causing additional connections to yield more interactions.

In applications like these, each agreement affects the environment in ways that make
others more attractive. But accommodating complementary agreements in matching
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models has proven challenging.1 Positive existence results have been given when there is
a continuum of agents (e.g., Azevedo and Hatfield (2018), Che, Kim, and Kojima (2019),
Kojima, Pathak, and Roth (2013), Jagadeesan (2017), Scotchmer and Shannon (2019)) or
outcomes (Hatfield and Kominers (2015), Bando and Hirai (2019)). Other authors have
shown that stable outcomes exist under additional conditions that are compatible with
some forms of complementarity. Most notable among these are pairwise alignment (Pycia
(2012)) between agents’ preferences;2 acyclic venture structures (Bando and Hirai (2019)),
that is, market structures where contractual relationships form a collection of trees;3 and
unimodular demand types (Baldwin and Klemperer (2019)) in transferable utility settings
with bilateral trades.4 Existence results have also been given when preferences over agree-
ments satisfy substitutability after the application of a suitable change of basis to the space
of outcomes—in particular, under the gross substitutes and complements condition of Sun
and Yang (2006).

To our knowledge, the literature has yet to provide existence results which accommo-
date more general forms of complementarities. One reason is its focus on the classical
one-to-one and many-to-one matching environments. These settings rule out some com-
plementarities directly: agents on at least one side of the market are limited to a single
agreement. If working for Hospital A rules out working for Hospital B, the two jobs can-
not be complementary for workers.

Moreover, many-to-one settings rule out other complementarities indirectly by requir-
ing substitutability on one side of the market. In particular, when agents on the other side
of the market view agreements as complementary, this substitutability can cause stable
outcomes to fail to exist. To understand why, consider typical maximal domain results
in the literature (e.g., those of Hatfield and Kojima (2008) or Hatfield and Kominers
(2017)). These are often interpreted as implying that stable outcomes do not generally
exist when agreements are not substitutable. However, a closer examination of the quan-
tifiers used in these results reveals that they do not rule out stability in the presence of
complementarities. Each is of the form “if any agent has preferences outside of class C,
there exists a profile of preferences in CN−1 for the other agents such that no stable out-
come exists.” But such statements do not imply that existence is nongeneric when agents’
preferences lie in a class D which does not contain C. This is precisely the case when D is
characterized by complementarities and C is the class of preferences for which agreements
are substitutes. Thus, the message of these converses is more nuanced and powerful than

1In particular, these complementarities are different from those discussed in the assortative matching litera-
ture following Becker (1973). Assortative matching models consider complementarities between types, whereas
these settings feature complementarities between agreements, which do not arise in a one-to-one setting.

2For example, in a two-sided matching market, pairwise alignment requires that workers strictly prefer
working with exactly those other workers that their employer prefers hiring alongside them.

3Recall that a tree is a graph or hypergraph with no cycles (undirected or directed). For instance, in a two-
sided matching market, an acyclic venture structure requires that there are never multiple workers who can
each be hired by one of the same two firms.

4Baldwin and Klemperer (2019) considered the existence of competitive equilibria in quasilinear economies
with indivisible goods; by Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2013, Theorem 5), these
induce stable outcomes in the matching market with contracts consisting of trades for those goods. The authors’
result for a different setting (cooperative games) is also related: Theorem 6.7 in Baldwin and Klemperer (2014)
shows that by letting goods represent individuals and agents represent coalitions, competitive equilibria induce
outcomes in the core (a distinct solution concept from matching-theoretic stability—see footnote 26). For
other results from the indivisible goods literature that are compatible with some forms of complementarity,
see Bikhchandani and Mamer (1997), Ma (1998), and Candogan, Ozdaglar, and Parrilo (2015), as well as their
discussion in Baldwin and Klemperer (2019).
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it might appear: if stable outcomes are to generically exist in the presence of arbitrary
complementarities, substitutability between agreements must be limited.5

This is exactly what we do in this paper: instead of weakening the requirement of substi-
tutability, we abandon it.6 In its place, we assume complementarity between agreements—
which, following Hatfield and Milgrom (2005), we refer to as contracts. Our results are
readily applicable to market structures studied by the literature, such as supply chains
and two-sided many-to-many matching, that (unlike many-to-one environments) do not
per se rule out such complementarities. However, our framework is more general: we do
not place any assumptions on market structure.7

These features are useful in accommodating interesting matching environments with
complementarities like the patent licensing and social media examples that we consider
throughout the paper. Such settings often have externalities (e.g., patent licenses nega-
tively affect competitors) and may not have a two-sided or acyclic market structure (e.g.,
social networks need not form a bipartite graph). Moreover, they lack the mutual exclu-
sivity between contracts that rules out complementarity in the many-to-one setting (e.g.,
the same patent can be licensed to multiple firms at the same time, and restrictions on the
number of links agents can form are often unnatural in social networks).

We present two existence results for environments with complementarities. In environ-
ments with nontransferable utility, Theorem 1 shows that a unique stable outcome exists
when contracts are complementary. Moreover, it characterizes that stable outcome as the
largest fixed point of a monotone operator representing the market’s aggregate demand
for contracts. This operator has not previously appeared in the literature; in particular, it
is not a Gale–Shapley operator.8 We show that this fixed point can be found by applying
a one-sided deferred acceptance algorithm that we introduce, and that it can be thought
of as the outcome which clears the market for contracts: there is no excess supply and no
excess demand.

Our second main result relaxes Theorem 1’s complementarity assumption in order to
consider environments with transferable utility. Instead of requiring all contracts to be
complements, Theorem 2 only requires that their nonpecuniary elements, which we call
primitive contracts, are (gross) complements.9 We then allow the agents involved in each
primitive contract to combine it with any set of transfers among them to form a contract.
(Transfers are not feasible in a nontransferable utility setting, and so Theorem 1 is not a

5That is, there are preferences for which all contracts are substitutes that cannot be accommodated.
6In particular, we do not consider a setting isomorphic to an exchange economy with substitutable goods

(e.g., Ostrovsky (2008), Hatfield et al. (2013), Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2019),
or Fleiner, Jagadeesan, Jankó, and Teytelboym (2019)).

7Relative to most of the matching literature, allowing for multilateral contracts is an innovation in its own
right: Multilateral contracts have so far been investigated by Hatfield and Kominers (2015), who considered
divisible agreements, and Teytelboym (2012), who utilized Pycia’s (2012) pairwise alignment condition in the
contracts context. A larger segment of the literature considers externalities (e.g., Pycia and Yenmez (2019)).
In settings with complementarities, this paper shows that accommodating either of these features is possible
without imposing the kinds of additional restrictions on preferences that are necessary in environments with
substitutability. (We discuss these features in the substitutable context in Rostek and Yoder (2019).)

8The monotonicity (and hence convergence) of Gale–Shapley operators such as those used in Hatfield and
Milgrom (2005) or Hatfield and Kominers (2012) derives from (full) substitutability between contracts; with
complementarities, these operators need not converge, and so do not lead to existence results. In contrast, the
monotonicity of our operator derives from complementarity between contracts.

9Hatfield and Kominers (2017) used the term primitive contract to denote elements that can be combined
with one another to form a contract. In our paper, this term plays the same role as trade in, for example,
Hatfield et al. (2013), or venture in Hatfield and Kominers (2015); that is, it denotes an element that can be
combined with transfers to form a contract.
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special case of Theorem 2.) In such environments, Theorem 2 shows that stable outcomes
exist, and that the set of primitive contracts they involve is unique.

Theorem 2’s characterization of stability relies on an intermediate result, Proposition 3,
which gives the welfare theorems that apply in our setting with transferable utility.10

The social planner’s problem in Proposition 3 is conditional: Each agent’s valuation over
primitive contracts is evaluated while holding the primitive contracts that do not involve
them fixed. Gross complementarity ensures that the problem’s solution correspondence is
monotone in the set of primitive contracts on which it conditions. Hence, its fixed points,
which we call conditionally efficient, are a complete lattice. Proposition 3 shows that these
are precisely the sets of primitive contracts that are supported by competitive equilibria.
Because of the complementarity in our environment, a specific class of competitive equi-
libria correspond to stable outcomes, even in the presence of externalities: Theorem 2
shows that outcomes are stable if and only if they correspond to competitive equilibria
supporting the largest conditionally efficient set of primitive contracts.

Proposition 3 is not an extension or a special case of the existence result for compet-
itive equilibrium in indivisible goods markets given by Baldwin and Klemperer (2019).
While their analysis also allows for some forms of complementarity, the environments we
consider are not isomorphic, nor are the sufficient conditions we rely on.11 In particular,
matching settings like those we consider need not be transformable into any market for
goods, complementary or otherwise.12

We also give two comparative statics which apply to both transferable and nontransfer-
able utility settings. The first, Proposition 4, gives a monotone comparative statics result
for stability in matching environments with complementarities akin to those for equilib-
rium in games: With nontransferable (resp., transferable) utility, an increase in a param-
eter increases the size of the stable outcome (resp., largest conditionally efficient set)
when agents’ utility from contracts (resp., valuation of primitive contracts) has the single
crossing property (resp., increasing differences) in the parameter.

The second concerns the effects of combining, or bundling, multiple contracts into a
single agreement. For instance, regulators may attempt to block the formation of patent
pools or cross-licensing agreements under antitrust law. When contracts are complements
or primitive contracts are gross complements, Proposition 5 shows that bundling or un-
bundling primitive contracts that do not appear in stable outcomes can only cause stable
outcomes to include more primitive contracts. Thus, when patent licenses are comple-

10Note that, even without externalities, the second welfare theorem does not hold in matching or indivisible
goods markets without restrictions on preferences such as the gross substitutes property or (as we show in
Proposition 3) the gross complements property. See, for example, Gul and Stacchetti (1999) (in goods markets)
or Hatfield et al. (2013) (in bilateral matching markets).

11Baldwin and Klemperer (2019) showed that an indivisible goods market always has a competitive equilib-
rium if and only if the agents have a unimodular demand type. Moreover, they showed that every such demand
type is a basis change of a demand type which exhibits complementarities, but not every demand type which ex-
hibits complementarities is unimodular. In contrast, we show that competitive equilibria exist in our matching
setting whenever agents’ demand correspondences satisfy the gross complements condition, but do not give
results when agents have a unimodular demand type outside of this class.

12The matching settings we consider are not transformable into a market for goods when primitive contracts
have externalities. Without externalities, a TU matching environment can be transformed into a goods market
in a way that preserves gross complementarity and competitive equilibria, but our result does not follow from
or imply Baldwin and Klemperer’s (2019) unimodularity theorem in this environment—see Examples 1 and 2
in Rostek and Yoder (2020).
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mentary, pooling patent licenses that do not transact can never decrease licensing activ-
ity.13

2. SETTING

There is a finite set I of agents and a set of contracts they can sign with one another.
Each contract has two parts: a primitive contract ω ∈ Ω representing the contract’s nonpe-
cuniary elements, and a vector of transfers tω ∈ Tω ⊆ R

I representing the payments to (or
from) each agent made as part of the contract.14 Hence, the set of all contracts is given by
X ≡ {(ω� tω)|ω ∈Ω� tω ∈ Tω}. The set of all primitive contracts Ω is finite. Let τ :X →Ω
map contracts to their primitive contracts: τ((ω� tω))= ω.

Each primitive contract ω ∈ Ω names a set of agents N(ω) ⊆ I whose agreement is
required for contracts involving ω to enter into force. Naturally, we say that each contract
(ω� tω) names the same agents as its primitive contract ω, and write the set of agents
named by x ∈ X as N(x) ≡ N(τ(x)). For sets of primitive contracts Ψ ⊆ Ω, we write
N(Ψ) ≡⋃

ω∈Ψ N(ω); for sets of contracts Y ⊆ X , we write N(Y) ≡⋃
x∈Y N(x). For each

agent i ∈ I, denote the set of primitive contracts that name i as Ωi ≡ {ω ∈ Ω|i ∈ N(ω)},
and define the set of contracts that name i as Xi ≡ {x ∈ X|i ∈ N(x)}. Similarly, let ΩJ ≡⋃

i∈J Ωi; XJ ≡ ⋃
i∈J Xi; Ω−i ≡ Ω \ Ωi; and X−i ≡ X \ Xi. For sets of primitive contracts

Ψ ⊆ Ω, write Ψi ≡Ψ ∩Ωi and Ψ−i ≡ Ψ ∩Ω−i; likewise, for sets of contracts Y ⊆ X , write
Yi ≡ Y ∩Xi and Y−i ≡ Y ∩X−i.

Agents have preferences over sets of contracts, or outcomes. We allow an agent to have
strict preferences over outcomes even when they differ only in the contracts that do not
name them; that is, contracts may have externalities. Agent i’s preferences are described
by the utility function ui : 2X → R ∪ {−∞}. (Throughout, we use 2Y to denote the power
set of a set Y .)

A matching environment is a tuple 〈I�Ω� {Tω}ω∈Ω�N : Ω ⇒ I� {ui}i∈I〉. We consider
two types of matching environments: transferable utility (TU) and nontransferable utility
(NTU).

In a nontransferable utility matching environment, transfers are constrained to zero:
Tω = {0} for each ω ∈ Ω. Hence, the set of contracts is finite and isomorphic to the set of
primitive contracts; for simplicity, we write X =Ω.

In a transferable utility matching environment, any transfers among the agents named
by a primitive contract can be attached to it to form a contract. These transfers must sum
to zero: Tω = {tω ∈ R

N(ω)|∑i∈N(ω) t
ω
i = 0}. Agents’ preferences over sets of contracts are

quasilinear in transfers, and preclude them from signing more than one contract associ-

13The bundling operation we consider is related to the expressiveness ordering introduced by Hatfield and
Kominers (2017) in many-to-many settings with substitutes. However, it is distinct: We consider the effect of
bundling contracts together and replacing them with the resulting agreement, while they analyzed the impact
of making new bundles available while leaving existing contracts intact. These correspond to separate inter-
ventions by a market designer. For instance, our comparative static informs us about the effect of requiring
patents to be licensed individually instead of being part of a patent pool; theirs, on the other hand, concerns the
requirement that patents be available for license individually in addition to being available as part of a patent
pool.

14Primitive contracts play the same role here as trades do in, for example, Hatfield et al. (2013), and ventures
do in Hatfield and Kominers (2015).
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ated with the same primitive contract. Formally,

ui(Y) =
⎧⎨⎩vi

(
τ(Y)

)−
∑

(ω�tω)∈Yi

tωi � if τ(x) �= τ
(
x′) for each x�x′ ∈ Yi�

−∞� otherwise�
(1)

where the valuation vi : 2Ω → R describes agent i’s cardinal preferences over primitive
contracts.

2.1. Choice, Demand, and Complementarity

Using an agent’s preferences, we can derive a choice correspondence describing the
sets of contracts she might choose to sign when a set of contracts Y is available to
her. This choice correspondence has two arguments because we allow for externali-
ties: an agent’s preferences over sets of contracts that she might sign—and thus her
choices from Y—depend on the set of contracts Z she expects the other agents to sign.
Formally, define each agent i’s choice correspondence Ci : 2Xi × 2X−i ⇒ 2Xi as follows:
Ci(Y |Z) ≡ arg maxS{ui(S∪Z) s.t. S ⊆ Y }. Ci(Y |Z) gives the sets of contracts that i might
choose to sign from the set of available contracts Y when she expects the other agents to
sign Z.

In an NTU matching environment, the relevant notion of complementarity pertains to
the choice correspondence. We say that contracts are complements for agent i if, for all Y ⊆
Z ⊆ X , Y ∗ ∈ Ci(Yi|Y−i) and Z∗ ∈ Ci(Zi|Z−i) imply Y ∗ ∪Z∗ ∈ Ci(Zi|Z−i). If contracts are
complements for each i ∈ I, we say contracts are complements. In words, complementarity
between contracts means that an agent never rejects a previously chosen contract when
new contracts become available to her or other agents sign new contracts. Instead, either
the addition of contracts signed by other agents or the addition of new contracts available
to her (or both) may prompt an agent to choose contracts that she previously rejected.
When Ci is single-valued, complementarity means that it is monotone (in the usual set
order, ⊆) in both the set of contracts available for i to sign and the set of contracts she
expects other agents to sign. In general, it is slightly weaker than monotonicity (in the
strong set order on 22Xi , �)15 of Ci in both arguments, because it does not require Y ∗ ∩
Z∗ ∈ Ci(Yi|Y−i). This allows our condition to accommodate some substitutabilities that
monotonicity would rule out.16

Lemma 1 shows that complementarity between contracts is implied by familiar proper-
ties of the utility function ui.17 (See Examples 1 and 2 for an illustration.)

15Recall that an order (here, ⊆) on a lattice (here, 2Xi ) induces an order � on the set of subsets of that lattice
(here, 22Xi ). Topkis (1998) referred to � as the induced set order, while Milgrom and Shannon (1994) referred
to it as the strong set order; we adopt the latter convention. Here, � is defined as follows: for Y�Z ∈ 22Xi ,
Y � Z ⇔ for all Y ∈ Y and Z ∈ Z , Y ∩Z ∈ Y and Y ∪Z ∈ Z .

16Consider, for instance, two contracts x and y that name i and have the same effect on agent i’s pay-
offs in combination as they do individually: ui({x}) = ui({y}) = ui({x� y}) > ui(∅). Then Ci({x}|∅) = {x} and
Ci({x� y}|∅) = {{x}� {y}� {x� y}}. This satisfies our definition of complementary contracts. But {x} ∩ {y} = ∅ /∈
Ci({x}|∅), so Ci is not monotone.

17Recall that ui(Y) is quasisupermodular in Yi if, for all Yi�Y
′
i ⊆ Xi and all Y−i ⊆ X−i , ui(Y

′
i ∪ Y−i) ≥

ui((Y
′
i ∩Yi) ∪Y−i) implies ui((Y

′
i ∪Yi) ∪Y−i) ≥ ui(Yi ∪Y−i), and ui(Y

′
i ∪Y−i) > ui((Y

′
i ∩Yi) ∪Y−i) implies

ui((Y
′
i ∪ Yi) ∪ Y−i) > ui(Yi ∪ Y−i). ui(Y) has single crossing in (Yi�Y−i) if, for all Y ′

i ⊃ Yi and Y ′
−i ⊃ Y−i ,

ui(Y
′
i ∪Y−i)≥ ui(Yi ∪Y−i) implies ui(Y

′
i ∪Y ′

−i)≥ ui(Yi ∪Y ′
−i) and ui(Y

′
i ∪Y−i) > ui(Yi ∪Y−i) implies ui(Y

′
i ∪

Y ′
−i) > ui(Yi ∪Y ′

−i).
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LEMMA 1—Complements, Quasisupermodularity, and Single Crossing: If ui(Y) is qua-
sisupermodular in Yi and has single crossing in (Yi�Y−i), then contracts are complements for
agent i.

In a TU matching environment, we will also be interested in agent i’s demand corre-
spondence for primitive contracts. As with her choice correspondence, the presence of
externalities requires an agent’s demand correspondence to condition on the behavior
she expects from the other agents, this time in the form of primitive contracts. For-
mally, define agent i’s demand correspondence Di : RΩi × 2Ω−i ⇒ 2Ωi by Di(pi|�) ≡
arg maxΨ⊆Ωi

{vi(Ψ ∪�)−∑ω∈Ψ pω
i }. Di(pi|�) specifies the sets of primitive contracts that

agent i prefers when the transfers they require from her are given by the price vector
pi ∈ R

Ωi , given the set of primitive contracts � included in other agents’ contracts.
The transferable utility setting is incompatible with complementarity between all con-

tracts. In particular, two contracts involving the same primitive contract are never com-
plementary, and instead are always substitutes. Consequently, we must employ a different
notion of complementarity in TU matching environments; this notion pertains to the de-
mand correspondence, rather than the choice correspondence.

We say that the correspondence Di satisfies the gross complements condition if it is
antitone (in the strong set order on 22Ωi ) in price and monotone in other agents’ primitive
contracts. That is, for any price vectors pi ≥ qi ∈ R

Ωi , any set of primitive contracts � ⊆
�′ ⊆Ω−i, and any Ψ ∈Di(pi|�), Ψ ′ ∈ Di(qi|�′), we have Ψ ∩Ψ ′ ∈ Di(pi|�) and Ψ ∪Ψ ′ ∈
Di(qi|�′).18 If Di satisfies the gross complements condition for each i ∈ I, we say that
primitive contracts are gross complements. In words, gross complementarity means that
the addition of a primitive contract is more attractive when the price of other primitive
contracts is lower, and when other agents sign more contracts.

Lemma 2 shows that gross complements condition on demand is equivalent to super-
modularity of the agent’s valuation in the contracts that name him and increasing differ-
ences in those that do not. (See Example 3 for an illustration.)

LEMMA 2—Gross Complements, Supermodularity, and Increasing Differences: vi(Ψ)
is supermodular in Ψi and has increasing differences in (Ψi�Ψ−i) if and only if Di satisfies
the gross complements condition.

Both our NTU and TU conditions (complementarity between contracts and gross com-
plementarity between primitive contracts, respectively) place restrictions on the external-
ities created by contracts. These restrictions are entirely about the way contracts that do
not name an agent affect his marginal utility, and have no implications for the way they
affect his utility level.19 In particular, there is no requirement that contracts have positive
or negative externalities (i.e., that ui(Y) is increasing or decreasing, respectively, in Y−i).
All that matters is that externalities are complementary with other agents’ contracts; that
is, when other agents sign more contracts, an agent chooses a (weakly) larger set of primi-
tive contracts from the same set of available contracts (in the NTU setting) or at the same
price vector (in the TU setting). This is illustrated in a later example (Example 3), where

18Note that this implies complementarity on the single-valued locus of demand; that is, if �⊆�′ ⊆Ω−i and
pi ≥ qi ∈ R

Ωi , then for any Ψ ∈ Di(pi|�), there exists Ψ ′ ∈ Di(qi|�′) with Ψ ′ ⊇ Ψ , and for any Ψ ′ ∈ Di(qi|�),
there exists Ψ ∈Di(pi|�′) with Ψ ′ ⊇Ψ .

19Indeed, Lemmas 1 and 2 give sufficient conditions for complementarity/gross complementarity which have
no implications for the effect of other agents’ contracts on an agent’s utility level.
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each primitive contract has negative externalities, and in Example A.1 in the Supplemen-
tal Material (Rostek and Yoder (2020)), where some primitive contracts have positive
externalities and others have negative externalities; in both examples, primitive contracts
are gross complements.

2.2. Remarks on Model Assumptions

Several assumptions that are common in the matching literature are not present in our
setting. In particular, we do not assume that the market has a certain structure (e.g., a
two-sided market, an acyclic network, etc.), that agreements are bilateral, or that exter-
nalities are absent. As our results show, these assumptions are not necessary to ensure
the existence of stable outcomes in NTU matching environments where contracts are
complements, or in TU matching environments where primitive contracts are gross com-
plements.

Other authors, such as Hatfield and Milgrom (2005) and Hatfield et al. (2019), have
shown that in settings where contracts specify transfers, choice-theoretic and demand-
theoretic notions of (full) substitutability are equivalent. We emphasize that the same is
not true about choice-theoretic and demand-theoretic notions of complementarity, which
are fundamentally different. In particular, gross complementarity is defined in trans-
ferable utility matching environments, while complementarity between (all) contracts is
ruled out by transferable utility. In spite of this, we show throughout the paper that the
two complementarity notions lead to parallel conclusions through similar arguments.

We define complementarity in terms of behavior (choice or demand correspondences)
rather than preferences (utility or valuation functions) in order to mirror the approach
of the literature on (full) substitutability. However, Lemmas 1 and 2 show that a single
condition on preferences is sufficient for both complementarity between contracts (in the
NTU case) and gross complementarity (in the TU case). In particular, we could impose
the same functional form (1) for payoffs in both TU and NTU settings; doing so would
be without loss of generality, since the NTU setting constrains transfers to zero. We could
then require vi(Ψ) to be supermodular in Ψi and have increasing differences in (Ψi�Ψ−i)
in both settings.

While this would further unify the treatment of TU and NTU matching environments,
it has two distinct disadvantages. First, supermodularity and increasing differences (or
even quasisupermodularity and single crossing) are stronger than necessary to ensure
complementarity in the NTU setting. In particular, imposing these conditions would rule
out more substitutability than necessary to ensure that stable outcomes exist. (See foot-
note 16.) Second, adopting a quasilinear functional form outside of the TU setting would
make the entire model appear to be based on quasilinearity, and thus appear to rule out
important applications (such as social media, Example 2) in the NTU setting.

3. SOLUTION CONCEPT

We follow the bulk of the matching literature in adopting stability as our primary so-
lution concept. Below, we extend it to accommodate externalities while maintaining its
central features. Namely, outcomes are stable if they are robust to unilateral deletion of
contracts and multilateral addition of contracts.

DEFINITION—Stability: A set of contracts Y ⊆X is stable if it is
(i) Individually rational: Yi ∈ Ci(Yi|Y−i) for all i ∈ I.
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(ii) Unblocked: There does not exist a block Z ⊆ X \ Y such that for all i ∈ N(Z),
Zi ⊆ Y ′ for some Y ′ ∈Ci((Z ∪Y)i|(Z ∪Y)−i).

With single-valued choice and no externalities, this definition is identical to the stan-
dard definition in the matching with contracts literature (e.g., Hatfield et al. (2013), Hat-
field and Kominers (2012), Fleiner, Jankó, Tamura, and Teytelboym (2016)). Each of
these defines a block of Y as a set of contracts Z which, when offered alongside Y , are
chosen by each of the agents they name. That is, each contract in Z is among those cho-
sen from Y ∪Z by each agent that the contract names. Which of the contracts in Y those
agents choose from Y ∪Z is immaterial. As is well understood, this means that the agents
which participate in a block need not agree about the existing contracts in Y that they will
keep.20

To extend stability to environments with externalities, we must specify the set of con-
tracts among other agents that an agent takes as given when making choices as part of a
block.21 Here, we have agents take as given both the existing contracts among other agents
(Y−i) and the contracts among other agents which are part of the blocking set (Z−i). We
do so for two reasons.

First, as in the standard stability concept without externalities, when an agent i partic-
ipates in a block Z of Y , he chooses contracts from the set (Y ∪ Z)i of existing and new
contracts that name him. In doing so, he takes as given that those contracts are available
to him, and hence that every other agent named by those contracts is willing to sign them.
To be consistent, he should take the same thing as given about the contracts in the set
(Y ∪ Z)−i of existing and new contracts that do not name him. Doing so is equivalent
to taking the presence of (Y ∪ Z)−i as given, since those contracts do not require his
agreement.

In addition, we want the set of contracts that an agent takes as given when making
choices as part of a block to be consistent with the set of contracts that other agents
actually sign as part of that block. That is, if agent i takes Z′ as given when making choices
as part of a block Z of Y , it should be the case that each other agent j participating in the
block chooses each contract in Z′

j as part of it.
When contracts are complements or primitive contracts are gross complements, our

definition of blocking satisfies this criterion for any block that is relevant for stability:

20When indifferences are present, and choice may be multi-valued, our definition of stability is a refinement
of the definition advanced by Hatfield et al. (2013), because it requires robustness to more blocks. For Z to
block Y , Hatfield et al. (2013) required that each contract in Z must be part of every set that agents named by
contracts in Z might choose from Z ∪ Y . In contrast, our definition requires only that each contract in Z is
part of some set that agents named by contracts in Z might choose from Z ∪Y .

Hence, our definition allows for blocks involving contracts which some agents are indifferent about,
which can be important when contracts are complements. Consider an NTU matching environment with
I = {1�2}, X = {a�b}, and N(a) = N(b) = I. Agent 1 views the two contracts as perfect complements:
C1({a}|·) = C1({b}|·) = {∅}, C1({a�b}|·) = {{a�b}}. Agent 2 strictly prefers signing at least one of the con-
tracts to signing none of them, but is indifferent among outcomes with at least one contract: C2({a}|·) = {{a}},
C2({b}|·)= {{b}}, C2({a�b}|·)= {{a}� {b}� {a�b}}. Given its treatment of indifferences, the stability definition of
Hatfield et al. (2013) would predict that ∅ is unblocked (and thus stable), even though both agents prefer {a�b}
to ∅ and would choose both a and b when both are offered. In contrast, {a�b} is the unique stable outcome
under our definition.

Blocks involving indifferences can similarly affect the set of stable outcomes in environments with full sub-
stitutability (e.g., Hatfield and Kominers (2012), Hatfield et al. (2013)). In particular, if (in the terminology of
Hatfield et al. (2013)) agent 1 is the seller of contract a and the buyer of contract b, then both agents in the
example above have fully substitutable preferences.

21See also the discussion in Hatfield and Kominers (2015).
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Proposition 1 shows that if a set of contracts Y survives the individual rationality prong
(i) of our stability criterion, it is blocked by Z if and only if all contracts in (Y ∪ Z)i are
chosen by each agent i, given the presence of (Y ∪Z)−i. That is, an individually rational
Y is blocked by Z if and only if Z ∪ Y is also individually rational; that is, if and only if
agents choose more contracts as part of the block rather than different ones. This means
that there is never any disagreement among participants in such blocks about the survival
of existing contracts that involve them. Instead, taking as given that all existing contracts
will continue to be available—as is standard in the literature—is fully consistent with the
behavior of other agents.

PROPOSITION 1—Blocking and Individual Rationality: Suppose that a set of contracts
Y ⊆X is individually rational. If

(i) the matching environment is NTU and contracts are complements, or
(ii) the matching environment is TU and primitive contracts are gross complements,

then a set of contracts Z ⊆ X \Y blocks Y if and only if Y ∪Z is individually rational.

Proposition 1 also implies that with complementary contracts or gross complements,
an individually rational set of contracts Y is blocked by some set of contracts if and only
if there is a strictly larger individually rational set of contracts Y ′ ⊃ Y . This leads to the
following characterization of stability in terms of individual rationality.

COROLLARY 1—Stability and Individual Rationality: If
(i) the matching environment is NTU and contracts are complements, or

(ii) the matching environment is TU and primitive contracts are gross complements,
then a set of contracts Y ⊆X is stable if and only if (a) Y is individually rational and (b) there
is no Y ′ ⊃ Y that is individually rational.

One final point about the definition of a block is worth mentioning. Stability—both
here, and in the broader matching with contracts literature—does not require every agent
that participates in a block to receive higher utility after the block than before it. This is
by design: Because agents can sign more than one contract, and in addition, because con-
tracts may have negative externalities, the question whose answer determines whether an
agent is willing to participate in a block is not “does participating make me better off
than before?” but rather “does agreeing to all of my new contracts as part of the block
make me better off than if I only agreed to some or none of them?” This is precisely what
is captured by the choice-theoretic notion of stability: Agents choose to create new con-
tracts as part of a block only if they think that, given the behavior they anticipate from
the other agents, vetoing some or all of those contracts would not make them better off.
That is, stability requires blocks to be self-enforcing rather than payoff-improving. More-
over, as Proposition 1 shows, with either gross complements or complementary contracts,
the behavior that agents anticipate from others is consistent with their actual behavior
whenever a block is relevant for stability.

4. EXISTENCE AND CHARACTERIZATION

In this section, we show that stable outcomes exist in NTU matching environments
where contracts are complements (Section 4.1), and in TU matching environments where
primitive contracts are gross complements (Section 4.2).
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4.1. Stability With Nontransferable Utility

In Section 3, we showed that in environments with complementarities, stability is char-
acterized by the set of individually rational outcomes (Proposition 1, Corollary 1). In the
NTU case, we give a simple characterization of individual rationality (Lemma 4)—and
hence of stability (Proposition 2)—in terms of the fixed points of a novel monotone oper-
ator. This allows us to prove our existence result for NTU matching environments (The-
orem 1).

When choice correspondences can be multi-valued (as we allow), this characterization
employs complementarity in an additional way. Lemma 3 shows that when contracts are
complements, there is a largest element of Ci(Yi|Y−i) for each Y ⊆ X . Hence, check-
ing whether Y is individually rational only requires us to check whether Yi is the largest
element of Ci(Yi|Y−i). By Corollary 1, complementarity between contracts allows us to
determine which outcomes are stable merely by knowing which outcomes are individu-
ally rational. Consequently, complementarity between contracts also allows all relevant
information about an agent’s choices from a set Y to be encoded in a single acceptance
set Ai(Y)—the largest set of contracts chosen from Yi given Y−i—instead of requiring a
collection of sets Ci(Yi|Y−i).

More formally, define agent i’s acceptance function Ai : 2X → 2Xi by Ai(Y) ≡⋃
Z∈Ci(Yi |Y−i)

Z. For any Y ⊆ X , agent i’s acceptance set from Y , Ai(Y), gives the set
of contracts in Y which name her and which she is willing to sign, given the presence of
the contracts in Y which do not name her. (Equivalently, it is the set of contracts which
agent i does not reject from Yi, given the presence of the contracts in Y−i.)

LEMMA 3—Contracts are Complements ⇒ Acceptance Set is Chosen: In a nontrans-
ferable utility matching environment where contracts are complements for agent i, Ai(Y) ∈
Ci(Yi|Y−i) for all Y ⊆X .

These individual acceptance functions generate an aggregate acceptance function A :
2X → 2X according to A(Y) ≡ ⋂

i∈I(Ai(Y) ∪ Y−i). In an NTU matching environment,
this aggregate acceptance function can be interpreted as agents’ aggregate demand for
contracts:22 Like aggregate demand at a price vector in a goods market, the aggregate
acceptance set at Y , A(Y), aggregates individual choices from budget sets based on a
dual variable. Instead of a price vector, that dual variable is a set of available contracts:
When faced with the set of contracts Y , A(Y) gives the contracts x ∈ Y that each agent
i ∈N(x) is willing to sign (given the existence of the contracts in Y−i).

Lemma 4 shows that the set of individually rational outcomes is exactly the set of fixed
points of the aggregate acceptance function. Intuitively, when an outcome Y is equal to
the aggregate acceptance set at Y , A(Y), no one rejects any contracts from it—and thus
it is individually rational.

LEMMA 4—Individually Rational Outcomes as Fixed Points: In a nontransferable utility
matching environment where contracts are complements, Y ⊆ X is individually rational if
and only if A(Y)= Y .

This fixed point characterization of individual rationality is useful when contracts are
complements because complementarity allows us to characterize stable outcomes using

22Note that in contrast to Hatfield and Milgrom (2005), “aggregate demand” refers to aggregation over
agents rather than the cardinality of the chosen set of an individual agent.
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the set of individually rational outcomes (Corollary 1). Hence, Lemma 4 yields a charac-
terization of stability in terms of the fixed points of A (Proposition 2) which enables our
existence result for NTU matching environments (Theorem 1).

PROPOSITION 2—Stable Outcomes as Fixed Points: In a nontransferable utility matching
environment where contracts are complements, Y ⊆ X is stable if and only if (a) A(Y) = Y
and (b) A(Y ′) �= Y ′ for all Y ′ ⊃ Y .

The two conditions in Proposition 2 correspond to the two parts of the definition of
stability. Condition (a) is equivalent to individual rationality (Lemma 4). Given individual
rationality and complementarity between contracts, (b) is equivalent to unblockedness
(Lemma 4 and Corollary 1). While Proposition 2 requires complementarities, a weaker
characterization of stability in terms of aggregate choice holds more generally; see Rostek
and Yoder (2019).

These conditions have two interpretations, one of which is economic and the other
mathematical. Economically, (a) says that there is no excess supply of contracts at Y : all
contracts available at Y are accepted by the agents they name. Condition (b) says that
there is no excess demand for contracts at Y : the agents would not accept a larger set
of contracts were it available.23 We can therefore think of stable outcomes as outcomes
which clear the market for contracts.24

Mathematically, (a) says that Y is a fixed point of A and (b) says that there is no fixed
point of A larger than Y . This is the first of two facts necessary to prove our main re-
sult for NTU matching environments, Theorem 1. The other is the monotonicity of the
acceptance function when contracts are complements.

LEMMA 5—Complementarity and Monotonicity: In a nontransferable utility matching
environment where contracts are complements, the aggregate acceptance function A is mono-
tone (in the usual set order, ⊆).

Proposition 2 tells us that a set is stable if and only if it is a fixed point of A and there
are no larger fixed points of A. Lemma 5, along with Tarski’s fixed point theorem, tells
us that A has a largest fixed point. This yields our existence and uniqueness result for
nontransferable utility matching environments, Theorem 1.

THEOREM 1—Stability With Complementary Contracts: In a nontransferable utility
matching environment where contracts are complements, the aggregate acceptance function
A has a largest fixed point X∗ on 2X , which is the unique stable outcome.

When contracts are substitutes, it is well-known that stable outcomes are precisely
those which can result from a two-sided deferred acceptance algorithm (Gale and Shap-
ley (1962), Hatfield and Milgrom (2005), Hatfield and Kominers (2012)). In each stage of

23Like its counterpart in an exchange economy, the concept we describe as no excess supply refers to an
absence of excess quantity (of contracts) supplied at a single value of a variable describing the choices available
to the agents (the set of available contracts). In contrast, the concept we describe as no excess demand is
different, referring to an absence of contracts demanded at any larger set of available contracts in excess of the
set of available contracts.

24Other authors such as Hatfield and Kominers (2012) have given stability a market clearing interpretation,
but the results we present here and in Rostek and Yoder (2019) show that stability is equivalent to market
clearing at the aggregate level, that is, in terms of the market’s aggregate acceptance/choice function.
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this algorithm, agents on one side of these contracts (e.g., colleges, hospitals, or sellers)
may make new offers to agents on the other side (e.g., applicants, doctors, or buyers).
From among their new offers and the offers they already hold, the recipients of these
offers choose a set to reject and a set to hold until the next stage.25

Theorem 1 shows that when contracts are complements, we can continue to think of
stable outcomes as the results of an algorithm in which agents defer acceptance of con-
tracts, this time with only one side. The agents start each stage n of this one-sided deferred
acceptance algorithm with a set of available contracts Y [n]. In the first stage, this is the
set of all contracts: Y [1] =X . Each agent may then reject a set of available contracts that
name them. When making this choice, agents take as given the existence of the available
contracts that do not name them. Hence, in stage n, each agent i rejects Y [n] \Ai(Y [n]).
All contracts which have not yet been rejected continue to be available in the next stage.
Thus, Y [n + 1] =⋂

i∈I(Ai(Y [n]) ∪ Y [n]−i) = A(Y [n]) ⊆ Y [n] for each n. Then, since X
is finite, the algorithm must eventually terminate at a fixed point Y [n̄] = A(Y [n̄]) for
some n̄. Since A is monotone, so is its n̄-fold composition with itself, An̄; hence, for any
fixed point Z of A, Y [n̄] = An̄(X) ⊇ An̄(Z) = Z. Thus, the algorithm terminates at the
largest fixed point of A, which Theorem 1 shows is the unique stable outcome.

Both this result and its transferable utility counterpart (Theorem 2) may seem related
to those showing the core is nonempty when the coalitional value function is supermod-
ular (e.g., Sherstyuk (1999)). These nonempty core results consider environments where
agents are complementary for coalitions, whereas we consider those where contracts are
complementary for agents. These sets of environments are very different. For instance, the
core considers environments where agents can be part of a single coalition; this means
that agreements to join a coalition cannot be complementary for the agents. Conversely,
our environment accommodates the formation of complementary overlapping coalitions.26

It is important to note that the unique stable outcome need not be Pareto efficient. This
is intuitive in the presence of externalities, but is also true in their absence when an agent
can sign multiple contracts at the same time. Recall that stability does not require robust-
ness to each deviation that improves the deviating agents’ payoffs. Instead, it requires the
absence of blocks which are self-enforcing in the sense that participation is optimal for
each of the deviating agents. When agents can sign multiple contracts, these sets of devi-
ations may differ: Participating in a block by signing multiple new contracts may increase
an agent’s payoff, but shirking by signing only some of them may increase his payoff even
more. Example 1 illustrates this.

EXAMPLE 1—Stable Outcomes Need Not Be Pareto Efficient: Suppose there are three
contracts X = {a�b� c} which each name both of two agents N = {1�2} with utility func-

25We note a further difference between our results and those in the literature. Unlike environments with
substitutable contracts, environments where contracts are complementary need not satisfy the irrelevance of
rejected contracts (IRC) condition (Aygün and Sönmez (2013)). While choices result from preference maxi-
mization in our model—and thus satisfy IRC—this is only to unify our NTU and TU matching environments,
and is not necessary for Theorem 1. All of its arguments would still hold in the absence of IRC, so long as
contracts remain complements (which does not imply IRC).

26In addition, stability considers different deviations than the core: the core considers only deviations in
which the deviating coalition stops interacting with the rest of the agents, while stability allows coalitions to
maintain existing relationships when they deviate. This rules out the blocks that are relevant for stability with
complementarities, since Proposition 1 shows that agents will never want to delete existing contracts as part of
a block of an individually rational outcome. Moreover, unlike with the core, the unique stable outcome need
not be Pareto efficient.
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tions which satisfy the following inequalities:

u1

({a� c})> u1

({a�b� c})> u1(c) > u1(a) > u1

({b� c})> u1

({a�b})> u1(∅) > u1(b);
u2

({a�b})> u2

({a�b� c})> u2(b) > u2(a) > u2

({b� c})> u2

({a� c})> u2(∅) > u2(c)�

These utility functions satisfy quasisupermodularity, so by Lemma 1, Theorem 1 applies.
The aggregate acceptance function is given by

A
({a�b� c})=A

({a�b})=A
({a� c})= A(a)= a;

A
({b� c})=A(b) =A(c)=A(∅)= ∅�

From Theorem 1, the unique stable outcome is a, even though it is not Pareto efficient:
moving to {a�b� c} would increase the utility of both agents. (The Pareto efficient out-
comes are {a� c}, {a�b}, and {a�b� c}.) However, {a�b� c} does not block a: agent 1 cannot
commit to signing b, whereas agent 2 cannot commit to signing c.

Example 2 applies our results in the context of the social media industry.

EXAMPLE 2—Network Formation in Social Media: Consider the following simple
model of behavior on a social media website such as Facebook. The rich heterogeneity
among users in the model allows us to illustrate the scope of our existence and character-
ization result for NTU matching environments (Theorem 1) as well as the comparative
statics we give in Section 5.1.

There are n users: I = {1� � � � � n}. When a pair of users i, j is linked (e.g., are “friends”
on Facebook), user i receives posts (e.g., they appear in her “feed” on Facebook) from
agent j at rate λij > 0, whereas user j receives posts from agent i at rate λji > 0. The total
number of posts that user i expects to receive from each user she is linked to depends on
the time si ≥ 0 that user i chooses to spend on social media. Specifically, when she chooses
to browse social media for time si, she expects to receive siλij posts from each user j she
is linked to. Spending time on social media is (quadratically) costly: When user i browses
social media for time si, her payoffs are reduced by cis

2
i /2, where ci > 0.

When one user receives a post from another, both receive a payoff: The reader receives
Rij , while the poster receives Pij . Since social media websites like Facebook allow users
to restrict the audience of their posts as well as hide posts made by a particular user, we
assume Rij ≥ 0 and Pij ≥ 0 for each i, j.

Finally, a link between users i and j makes some of the personal information of each
visible to the other, imposing fixed privacy costs of Kij ≥ 0 on agent i and Kji ≥ 0 on
agent j.

Let ωij denote a link between agents i and j > i. If Y is the set of links in the social
network, agent i’s payoff from the action profile {sj}j∈I is given by

siR̃i(Y)+
(

n∑
j=1

P̂ij(Y)sj

)
− cis

2
i /2 − K̃i(Y)�

where

R̃i(Y) =
∑

j:ωij∈Y or ωji∈Y
Rijλij; K̃i(Y) =

∑
j:ωij∈Y or ωji∈Y

Kijλij;
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P̂ij(Y) =
{
Pijλji� ωij ∈ Y or ωji ∈ Y�

0� otherwise�

Then, given the social network Y , each user chooses s∗
i (Y) ≡ R̃i(Y)

ci
. Hence, each user’s

payoffs from the network Y are given by

ui(Y) = 1
2ci

(
R̃i(Y)

)2 +
(

n∑
j=1

P̂ij(Y)R̃j(Y)

cj

)
− K̃i(Y)�

Now consider a matching environment in which users form links with one another.
Specifically, let the primitive contracts represent links in the social network, that is, Ω =
{ωij|i� j ∈ I; j > i}, and let each link name the two agents it connects: N(ωij) = {i� j} for
each ωij .

Contracts are complements in this environment: Observe that R̃i(Y), P̂ij(Y), and
K̃i(Y) are each increasing, modular functions of Y . The first n+1 terms of ui are products
of these functions and so they are each supermodular. Then ui is the sum of supermod-
ular functions, and so is itself supermodular. By Lemma 1, this implies that contracts are
complements, since supermodularity implies quasisupermodularity and the single cross-
ing property.

Consequently, Theorem 1 characterizes the unique stable social network in this setting:
Among the (potentially many) individually rational networks, one must contain a larger
set of links than any of the others. This is the unique stable outcome; for the reasons
discussed in Example 1, it is not necessarily efficient.

Example 2 describes an important application in which contracts are complements.
Since these contracts are links in a network, it also shows how our results can be applied
in the context of network formation.

The classical solution concept in this literature is pairwise stability (Jackson and Wolin-
sky (1996)). This concept considers blocks (i.e., deviations involving new links) which con-
sist of the addition of a single link. However, in many network formation settings, there
are other deviations involving new links which may be important to consider. For instance,
deviations in which agents both add a link and remove others may be relevant when links
are substitutes, while deviations in which they add multiple links at the same time may be
relevant when links are complements.27 Hence, the literature also considers stronger solu-
tion concepts that consider larger sets of deviations.28 Because they require robustness to
more deviations that involve new links, existence conditions for these concepts are more
demanding than the relatively weak conditions which ensure that pairwise stable networks
exist.29

27In Example 2, for instance, adding many links might improve a user’s payoff from using social media when
adding a single link would not. Hence, users might choose to form multiple links simultaneously that would
not be chosen individually. Indeed, deviations involving multiple links are common in practice: When joining
Facebook, for instance, users often form links with several friends or acquaintances simultaneously.

28For instance, strong stability (Jackson and van den Nouweland (2005)) considers deviations which are prof-
itable for each member of a coalition that can feasibly implement them, whether or not they are individually
rational.

29Pairwise stable networks can be derived from the proper equilibria (which always exist) of a network
formation game as long as agents’ preferences are strict in their own links (Calvó-Armengol and İlkılıç (2009)).
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In this context, Theorem 1 contributes a sharp prediction to the network formation lit-
erature: When links are complementary, no additional conditions are necessary to ensure
that a network exists which is robust to deviations that may involve multiple links and
are self-enforcing (in the sense that participation in them is individually rational). More-
over, that network is unique, and we can find it through the use of our one-sided deferred
acceptance algorithm.

4.2. Stability With Transferable Utility

Just as we used a market-clearing characterization of stability (Proposition 2) as an
intermediate step in our existence result for NTU matching environments, we establish a
connection to the concept of competitive equilibrium to show that stable outcomes exist in
TU matching environments.

We follow the definition of competitive equilibrium for matching markets with multi-
lateral contracts and externalities introduced by Hatfield and Kominers (2015), adapted
to our discrete setting. Formally, a set of primitive contracts Ψ and a set of price vectors
{pi}i∈I is a competitive equilibrium if it clears the market: Ψi ∈ Di(pi|Ψ−i) for each i ∈ I
and

∑
i∈N(ω) p

ω
i = 0 for each ω ∈ Ω.

To characterize the set of competitive equilibria and show that it is nonempty, we use
a social planner’s problem with externalities similar to the one employed by Hatfield and
Kominers (2015). Given a transferable utility matching environment, define its conditional
welfare function W : 2Ω × 2Ω → R and its conditional optimizer correspondence F : 2Ω ⇒ 2Ω

as follows:

W (�|Ψ)≡
∑
i∈I

ṽi(�|Ψ)� F(Ψ) ≡ arg max
�⊆Ω

W (�|Ψ)�

where agent i’s conditional valuation ṽi : 2Ω×2Ω → R is defined as ṽi(�|Ψ) ≡ vi(�i∪Ψ−i).
If Ψ solves the social planner’s problem holding the primitive contracts which do not

name each agent i fixed at Ψ−i, that is, if Ψ is a fixed point of F , then we say it is condition-
ally efficient. Conditionally efficient sets of primitive contracts are precisely those where
there are no gains from recontracting for agents that take as given the set of primitive
contracts that do not name them.

LEMMA 6—Gross Complementarity, Supermodularity, and Monotonicity: If agent i’s
demand correspondence satisfies the gross complements property, then ṽi(�|Ψ) is supermod-
ular in � and has increasing differences in (��Ψ). If primitive contracts are gross comple-
ments, then the conditional welfare function W (�|Ψ) is supermodular in � and has in-
creasing differences in (��Ψ), F(Ψ) is a complete lattice for each Ψ , and the conditional
optimizer correspondence F is increasing (in the strong set order).

The observations of Lemma 6 give rise to a conditional version of the welfare theorems,
and a lattice characterization of conditional efficiency.

While pairwise stability does not consider deviations involving the removal of multiple links at the same time,
Calvó-Armengol and İlkılıç (2009) showed that the networks found this way are robust to these deviations.
Hence, we focus on deviations involving new links as the crucial difference between pairwise and matching-
theoretic stability.

The existence conditions for strong stability given by Jackson and van den Nouweland (2005), on the other
hand, are stronger. In particular, they require the coalitional value of a network to be anonymous (i.e., invariant
to permutations of agents) and its average value to be highest for the grand coalition.
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PROPOSITION 3—Competitive Equilibria With Gross Complementarity: In a transfer-
able utility matching environment where primitive contracts are gross complements,

(i) Ψ is conditionally efficient if and only if there exists a set of price vectors {pi}i∈I such
that (Ψ� {pi}i∈I) is a competitive equilibrium.

(ii) The collection of conditionally efficient sets of primitive contracts is a nonempty com-
plete lattice.

Proposition 3 states that when primitive contracts are gross complements, any condi-
tionally efficient set of them can be combined with a suitable set of price vectors to form a
competitive equilibrium. This result relies on a Fenchel-type min-max duality theorem for
supermodular functions on a lattice given by Fujishige (1984). We use this result to show
that a social planner’s conditional primal and dual problems are equivalent in our setting,
so long as agents’ demand correspondences satisfy the gross complements condition.30

Like Baldwin and Klemperer (2019), our results are achieved without transforming the
setting in question into a Kelso and Crawford (1982) matching market with gross sub-
stitutes. This is a departure from the many papers in the indivisible goods and matching
literatures that use this technique to establish the existence of competitive equilibria. We
instead use discrete convex duality results, while Baldwin and Klemperer (2019) used re-
sults from tropical geometry.31

Next, we show that stable outcomes are precisely those formed by combining the largest
conditionally efficient set of primitive contracts with a competitive equilibrium price vec-
tor.32

THEOREM 2—Stability With Gross Complementarity: In a transferable utility matching
environment where primitive contracts are gross complements:

(i) There is a largest conditionally efficient set of primitive contracts Ω∗.
(ii) A set of contracts Y ⊆ X is stable if and only if τ(Y) = Ω∗ and there is a competitive

equilibrium (Ω∗� {pi}i∈I) such that tωi = pω
i for each (ω� tω) ∈ Y and i ∈ I.

With gross complementarity, Theorem 2 tells us that the willingness of agents to make
coordinated deviations can be captured by their optimization against a vector of latent
prices for the enactment of primitive contracts. In other words, just as Proposition 2
showed in the NTU context, stability corresponds to no excess demand and no excess sup-
ply—this time in the classical demand-theoretic sense. For deviations which only involve

30Proposition 3 resembles Hatfield and Kominers (2015, Theorem 10), which shows that competitive equi-
libria exist in multilateral matching environments with externalities and a continuum of outcomes. Unlike in
Hatfield and Kominers (2015), the set of outcomes is not convex in our environment, and so we cannot rely on
concave valuations and Kakutani’s fixed point theorem the way they do. Instead, we must rely on supermodular
valuations, a discrete convex duality result from Fujishige (1984), and Tarski’s fixed point theorem. Importantly,
the complementarity in our environment allows us to additionally show that some competitive equilibria (the
largest ones) correspond to stable outcomes (Theorem 2).

31When duality results have appeared in the matching and indivisible goods literatures, they have generally
been used to show that the set of competitive equilibrium price vectors is a lattice (e.g., Gul and Stacchetti
(1999), Hatfield et al. (2013)). An exception is recent work by Candogan, Epitropou, and Vohra (2016), which
uses discrete duality results for M
-concave functions to show that stable outcomes exist in the context of
substitutable contracts. Our results on existence with gross complements, in contrast, rely on duality results for
supermodular functions.

32This contrasts with Hatfield et al. (2013) who showed that all competitive equilibria are stable. This is due
to the fact that we allow for externalities and the slight difference (see footnote 20) in the way our solution
concepts treat indifferences.
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the elimination of contracts, this is intuitive: agents demand a primitive contract at the
current transfer level if and only if they do not want to veto it. Consequently, an outcome
is individually rational if and only if there is no excess supply. For deviations involving
signing new contracts, it is more subtle. Theorem 2 shows that the existence of a set of
prices for which no one wants to make an individual deviation (i.e., for which there is no
excess demand) implies the nonexistence of any transfers that would allow a joint devia-
tion (i.e., a block).

We can find the largest conditionally efficient set of primitive contracts in a TU match-
ing environment (i.e., the largest fixed point of F) similarly to the way our one-sided
deferred acceptance algorithm finds the largest fixed point of A in an NTU matching
environment. By Lemma 6, for each Ψ ⊆ Ω, F(Ψ) is a complete lattice, and so has a
largest element

⋃
�∈F(Ψ) �. Then we can define the maximal selection of F , F∨ : 2Ω → 2Ω,

by F∨(Ψ) =⋃
�∈F(Ψ) �. Since F is monotone, so is its maximal selection F∨ (Topkis (1998,

Theorem 2.4.3)). It follows that we can find the largest fixed point of the selection by
starting at the set of all primitive contracts and repeatedly applying F∨, the same way we
showed that the largest fixed point of A could be found following our NTU existence re-
sult. Lemma 7 shows that the set of primitive contracts produced by this algorithm is also
the largest fixed point of the conditional optimizer correspondence F .

LEMMA 7—Algorithm for Stable Outcomes in TU Matching Environments: The set of
fixed points of F∨ is a complete lattice, and the largest fixed point of F∨ is also the largest
conditionally efficient set of primitive contracts.

At each set of primitive contracts Ψ , F∨ realizes the gains from trade among the agents
when they each take as given the primitive contracts in Ψ that do not name them. Each
round of the fixed point algorithm updates what they take as given to match the results
of the previous round. We use this algorithm to illustrate the scope of Theorem 2 in the
context of patent licensing between competing firms.

EXAMPLE 3—Patent Licensing Among Competing Firms: Consider a general
Bertrand–Nash model of differentiated product competition with linear demand. There
are n firms: I = {1�2� � � � � n}. Each firm i ∈ I sells a single product. Demand for the firms’
products is linear, and given by Q(p) = a+ Sp. Demand is downward sloping: S is nega-
tive definite. Each firm has constant marginal cost ci, and sets prices to maximize profits
(pi − ci)Q(p)i given the pricing decisions of the other firms. Then firm i’s first-order
pricing condition is Q(p)i + Sii(pi − ci) = 0. Let S̄ ≡ diag(S11� S22� � � � � Snn). Aggregating
among firms yields

a+ Sp+ S̄p− S̄c = 0 ⇒ p∗ = −(S + S̄)−1(a− S̄c)�

Thus, given the vector of marginal costs c, firm i’s equilibrium profit is given by (where ei
is a vector with 1 in the ith position and zeroes elsewhere)((

p∗ − c
)′
ei
)︸ ︷︷ ︸

firm i markup

(
e′
i

(
a+ Sp∗))︸ ︷︷ ︸

firm i demand

= (a+ Sc)′(S + S̄)−1︸ ︷︷ ︸
−(p∗−c)′

ei (−Sii)e
′
i(S + S̄)−1(a+ Sc)︸ ︷︷ ︸

−e′
i(a+Sp∗)

�

(See the Supplemental Material for a derivation.) Now suppose that n− 1 of these firms
i ∈ {1�2� � � � � n−1} are incumbents who own patents on technologies that would lower the
marginal cost of firm n, an entrant, if it were to adopt them. In particular, each primitive
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contract in Ωi represents the license of a patent owned by firm i < n to firm n, and each
license ω ∈ Ωn = Ω reduces firm n’s costs by θω. Denote firm n’s marginal cost when it
does not license any patents by c0

n. Then, in a transferable utility matching environment,
we have

vi(Ψ) = (
a+ Sc(Ψ)

)′
(S + S̄)−1ei(−Sii)e

′
i(S + S̄)−1

(
a+ Sc(Ψ)

)
�

where c(Ψ)=
[
c1 c2 · · · c0

n −
∑
ω∈Ψ

θω

]′
�

Now since S is negative definite, Sii < 0; thus ei(−Sii)e
′
i is positive semidefinite, and

hence so is Ŝi ≡ 2S(S + S̄)−1ei(−Sii)e
′
i(S + S̄)−1S. Then, since Ŝi is its Hessian matrix,

(a+Sc)′(S+ S̄)−1ei(−Sii)e
′
i(S+ S̄)−1(a+Sc) is convex in c, and thus in −cn. Since patent

licenses only lower the cost of firm n, and since convex functions of sums are supermod-
ular in the set of summands (Topkis (1998, Lemma 2.6.2(a))), it follows that vi is super-
modular. Then, by Lemma 2, primitive contracts are gross complements, and we can apply
Theorem 2.

For concreteness, we consider two of these matching environments and use Lemma 7
to solve for the set of patent licenses that transact in stable outcomes. First, let n = 4
and suppose each incumbent firm j ∈ {1�2�3} has a single patent they can license to the
entrant. We label these licenses as Ω= {ω1�ω2�ω3}, with N(ωj)= {j�4}. Now let

c1 = c2 = c3 = 45� c0
4 = 75�

θ1 = 10� θ2 = 2� θ3 = 5�
a=

⎡⎢⎣100
100
100
100

⎤⎥⎦ � S =
⎡⎢⎣−2 1 1 1

1 −3 1 1
1 1 −5 1
1 1 1 −4

⎤⎥⎦ �

We have

F∨(Ω) = F∨
({ω1�ω2�ω3}

)= {ω2�ω3} F∨
({ω2�ω3}

)= {ω3} F∨
({ω3}

)= {ω3}
⇒ Ω∗ = {ω3}�

However, Ω∗ does not maximize the firms’ total profits. In fact, these would be highest
if the entrant did not license any patents at all. The license for firm 3’s patent transacts in
spite of this fact because firm 3 does not internalize the license’s negative externality on
the other incumbents.

Alternatively, consider the same setting, but with more concentrated intellectual prop-
erty rights. In particular, suppose that firm 1’s patent was owned by firm 3 instead:
N(ω1) = {3�4}. Then we have F∨(Ω) = {ω1�ω2�ω3}; hence, our algorithm converges im-
mediately, and all licenses transact in any stable outcome. This lowers firm profits even
further: W (Ω|Ω) <W ({ω3}|{ω3}). However, it benefits consumers in the product market:
Since the products are substitutes, the equilibrium price of each one falls as a result of the
decrease in the entrant’s marginal cost.

The difference in the stable outcomes of these two environments illustrates a “patent
thicket” (Shapiro (2000))—a dispersion in the ownership of patents which prevents some
of them from being licensed. But the reason for this effect is very different from the
Cournot complements problem discussed in Shapiro (2000).33 In fact, such problems can-

33The Cournot complements problem refers to the fact that when the producers of complementary goods
compete monopolistically, they charge higher prices and receive lower profits than if they were controlled by a
single firm.
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not occur in a stable outcome, because stable outcomes are robust to deviations by groups
of agents, such as a licensee and multiple patent holders. Instead, the Cournot comple-
ments problem results from a specific noncooperative bargaining protocol (simultaneous
price posting) rather than being inherent to environments with complementarities.34 In
our example, licensing expands not because intellectual property rights are more concen-
trated, but rather because they are allocated to a different firm that is less affected by
increased competition from the entrant.

We pause to consider the features of the model in Example 3 that give rise to com-
plementarities between patent licenses. First, note that patent licenses to the same firm
will always be complementary from the perspective of any firm in the model, for any
linear, downward sloping specification of market demand. Intuitively, lowering a firm’s
marginal cost with a patent license causes it to produce more units of output. This in-
creases the number of inframarginal units whose cost is reduced by the license of an addi-
tional patent—and hence its marginal benefit to the licensee. Second, while there is only
a single entrant in Example 3, the model can be extended to multiple potential licensees
when they produce complementary products; we do this in the Supplemental Material.35

Finally, we rely on the fact that technologies have independent effects on firm n’s cost to
establish the supermodularity of the firms’ valuations; if these effects were to interact, we
would not necessarily obtain the gross complements condition.

5. COMPARATIVE STATICS

The characterization of stable outcomes we offer in Theorems 1 and 2 allows us to
provide two sets of comparative statics. Section 5.1 discusses the way stable outcomes
change when primitive contracts become more complementary; Section 5.2 shows how
they change when primitive contracts are bundled together.

5.1. Monotone Comparative Statics

Our first comparative statics exercise considers how stable outcomes change when pref-
erences change. When primitive contracts are gross complements (in the TU case) or
when preferences satisfy Lemma 1’s sufficient conditions for contracts to be complements
(in the NTU case), we show that when the characteristics of the environment change so
that primitive contracts are more valuable to the agents they name, more primitive con-
tracts will appear in stable outcomes. This need not hold more generally: Without comple-
mentarity, increasing the value of some primitive contracts can cause agents to substitute
away from others.

34This is easiest to see by applying Theorem 2 to a patent licensing environment where firms do not compete
in the product market: In that case, patent licenses would not have externalities, and efficiency and conditional
efficiency would coincide. Hence, stable outcomes would maximize total profits, regardless of which firm con-
trolled which patents.

35Licensing a patent will cause a firm to increase output. If its product is complementary to that of another
firm, the second firm’s marginal revenue will increase, causing it to produce more output as well. This once
again means that there are more units of output for a patent license to the second firm to lower the cost of
producing. In contrast, if the two firms produced substitutes, this intuition would be reversed: a patent license
to either firm would lower the output of the other.
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PROPOSITION 4—Monotone Comparative Statics: Let Θ be a partially ordered set,
and {M(θ)}θ∈Θ be a parameterized collection of matching environments with M(θ) ≡
〈I�Ω� {Tω}ω∈Ω�N� {ui(·� θ)}i∈I〉.

(i) If {M(θ)}θ∈Θ are nontransferable utility matching environments, and each ui(Y�θ)
is quasisupermodular in Yi and has the single crossing property in (Yi�Y−i) and in
(Yi� θ), then X∗(θ), the unique stable outcome in M(θ), is increasing (in the usual
set order, ⊆) in θ.

(ii) If {M(θ)}θ∈Θ are transferable utility matching environments with valuations
{vi(·� θ)}i∈I , and each vi(Ψ�θ) is supermodular in Ψi and has increasing differences in
(Ψi�Ψ−i) and in (Ψi� θ), then Ω∗(θ), the largest conditionally efficient set of primitive
contracts in M(θ), is increasing (in the usual set order, ⊆) in θ.36

As we show in Rostek and Yoder (2020), part (i) of this result, for NTU matching
environments, is the matching-theoretic counterpart of Milgrom and Shannon’s (1994)
comparative static for Nash equilibria of games with strategic complementarities.

EXAMPLE 2—Revisited: Recall that in Example 2, agent i’s payoff from the set of social
connections Y was given by

ui(Y) = 1
2ci

(
R̃i(Y)

)2 +
(

n∑
j=1

P̂ij(Y)R̃j(Y)

cj

)
− K̃i(Y)�

We can see from their definitions that R̃(Y)i is increasing and supermodular in
(Y� {Rij}nj=1� {λij}nj=1); that P̂(Y)ij is increasing and supermodular in (Y� {Pij}nj=1� {λji}nj=1);
and that −K̃(Y)i is increasing and supermodular in (Y� {−Kij}nj=1). Moreover, each 1/cj
is nonnegative and decreasing in cj . Each term of ui is a product of these functions and
is thus supermodular in (Y� {Rij}i�j∈I� {Pij}i�j∈I� {λij}i�j∈I� {−Kij}i�j∈I� {−ci}i∈I); consequently,
ui is as well. Since supermodularity implies the single crossing property, Proposition 4
shows that the stable social network will expand with an increase in users’ payoffs {Rij}i�j∈I
from reading another user’s posts, the rates {λij}i�j∈I at which they receive posts from other
users, their payoffs {Pij}i�j∈I from having their posts read, and will become smaller with an
increase in the costs of forming links, {Kij}i�j∈I , or of spending time on the platform, {ci}i∈I .

Among the implications of this example is that a social media platform which profits
from user engagement has a financial incentive to institute privacy protections for its
users: Decreasing the cost of forming new connections will prompt users to form more
connections with one another—leading them to spend more time on the platform.

5.2. Bundling and Contract Design

Our second comparative static concerns the effects of bundling, that is, replacing two or
more independent primitive contracts with a single new primitive contract that duplicates
the effects of each. Bundling is prevalent in many matching environments. For instance,
licenses for related patents held by different firms—such as those associated with a techni-
cal standard—can be combined into patent pools; likewise, two firms can simultaneously
make their intellectual property portfolios available to one another through the use of

36The reason we use increasing differences in the parameter instead of the single crossing property in the
TU result is that the former aggregates well whereas the latter may not: see Quah and Strulovici (2012).
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a cross-license. In such environments, a designer can exert substantial control over out-
comes by affecting the way that primitive contracts are bundled—for instance, by using
antitrust law to block the formation of patent pools.

We say that a matching environment 〈I�Ω� {Tω}ω∈Ω�N� {ui}i∈I〉 is more bundled than
〈I� Ω̂� {T̂ ω}ω∈Ω̂� N̂� {ûi}i∈Î〉 if there is a surjective bundling map α : Ω̂ → Ω such that:

(i) when α bundles a set of primitive contracts together, it preserves the agents they
name: N(ω)= N̂(α−1(ω)) for all ω ∈Ω; and

(ii) when α bundles a set of primitive contracts together, agents’ payoffs are affected
by the resulting primitive contract in the same way as the original primitive con-
tracts: Either
(a) both environments are NTU, and for each i ∈ I and Ψ ⊆ Ω, ui(Ψ) =

ûi(α
−1(Ψ)); or

(b) both environments are TU with valuations {vi}i∈I and {v̂i}i∈I , respectively, and
for each i ∈ I and Ψ ⊆Ω, vi(Ψ) = v̂i(α

−1(Ψ)).
Our comparative static describes the effects of bundling primitive contracts together

(e.g., combining several bilateral agreements into a multilateral one), and of unbundling
them into their component parts (e.g., the reverse). In particular, suppose we have an
NTU matching environment where contracts are complements, or a TU matching envi-
ronment where primitive contracts are gross complements. Then, if we perform either un-
bundling (Proposition 5(a)) or bundling (Proposition 5(b)) on primitive contracts which
do not appear in the stable outcome, the new stable outcome will be weakly larger than
the old one.

PROPOSITION 5—Effects of Bundling Contracts Not Signed in the Stable Outcome:
Suppose that M = 〈I�Ω� {Tω}ω∈Ω�N� {ui}i∈I〉 is more bundled than M̂ = 〈I� Ω̂� {T̂ ω}ω∈Ω̂�
N̂� {ûi}i∈I〉 with bundling map α, and either

(i) both M and M̂ are NTU matching environments where contracts are complements,
and their unique stable outcomes are given by Ω∗ and Ω̂∗, respectively; or

(ii) both M and M̂ are TU matching environments where primitive contracts are gross
complements, and their largest conditionally efficient sets of primitive contracts are
given by Ω∗ and Ω̂∗, respectively.

It follows that:
(a) (Unbundling case) If α−1(α(ω)) =ω for all ω ∈ α−1(Ω∗), then α−1(Ω∗)⊆ Ω̂∗.
(b) (Bundling case) If α−1(α(ω)) =ω for all ω ∈ Ω̂∗, then Ω∗ ⊇ α(Ω̂∗).

Proposition 5 shows that with complementarities, bundling or unbundling primitive
contracts can overcome obstacles to their implementation, and will never impose new
hurdles. When agents are unable to form a new multilateral agreement, allowing its ne-
gotiation as a set of bilateral agreements instead may cause some of its benefits to be
realized. Similarly, if bilateral negotiation fails, organizations which facilitate multilateral
negotiation (such as patent pools) may be helpful.

In the NTU case (Proposition 5(i)), bundling or unbundling contracts that are not part
of the largest fixed point of the aggregate acceptance function A (and thus are not part
of any fixed point of A) cannot affect existing fixed points: whether A(Y) = Y cannot
depend on contracts not in Y . In contrast, in the TU case (Proposition 5(ii)), whether
F(Ψ) = Ψ does depend on primitive contracts not in Ψ . Hence, bundling or unbundling
primitive contracts that are not part of the largest fixed point of the conditional optimizer
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function F may remove its existing fixed points. However, we show that it also ensures
that there is a (possibly new) fixed point that is weakly larger than all of the old ones.
Because of this, bundling or unbundling primitive contracts that are not part of the stable
outcome increases the size of the largest fixed point of the aggregate acceptance function
A in the NTU case, and the conditional optimizer correspondence F in the TU case.
This corresponds to the unique stable outcome (Theorem 1) or unique set of primitive
contracts involved in stable outcomes (Theorem 2).

EXAMPLE 4—Bundling in NTU Matching Environments: Recall that in the NTU
matching environment M = 〈I�Ω� {{0}}ω∈Ω�N� {ui}i∈I〉 from Example 1 with Ω = {a�b� c}
and I = {1�2}, the unique stable outcome was {a} despite the fact that {a�b� c} gave both
agents higher utility. Suppose now that we define another, more bundled NTU matching
environment M̃ = 〈I� Ω̃� {{0}}ω∈Ω̃� Ñ� {ũi}i∈I〉 with primitive contracts Ω̃ = {ã� b̃c} accord-
ing to the bundling map α :Ω → Ω̃ given by

α(a)= ã� α(b)= α(c)= b̃c�

That is, let ũi = ui ◦ α−1 and Ñ = N ◦ α−1. α bundles together b and c, which are not
signed in the stable outcome of M̃ , and does not bundle a, the only contract in that stable
outcome, with any other contracts: α−1(α(a)) = α−1(ã)= a. We have

ũ1

({ã� b̃c})> ũ1

({ã})> ũ1

({b̃c})> ũ1(∅); ũ2

({ã� b̃c})> ũ2

({ã})> ũ2

({b̃c})> ũ2(∅)�
The {ũi}i∈I inherit quasisupermodularity from the {ui}i∈I described in Example 1. (In fact,
bundling preserves complementarity more generally; Lemma B.1 in the Supplemental
Material shows this formally.) Then Theorem 1 applies once again. This time, the aggre-
gate acceptance function is just the identity: A(Ψ) = Ψ for all Ψ ⊆ Ω̃. Then the unique
stable outcome of M̃ is X̃∗ = {ã� b̃c}. This is consistent with the prediction of Proposi-
tion 5(b): X̃∗ ⊇ α({a})= {ã}.

Here, bundling changes the stable outcome by allowing the two agents to overcome the
commitment problems that prevented them from realizing the Pareto-improving devia-
tion from {a} to {a�b� c}.

6. CONCLUSION

This paper introduces a framework for analyzing settings where agents form comple-
mentary agreements with one another. This opens new possibilities for future research.
In particular, understanding stability in environments characterized by complementarity
may prove useful in the analysis of environments that feature both complementarity and
substitutability.

Additionally, there is a growing literature on the structural estimation of matching en-
vironments. (For a survey, see Chiappori and Salanié (2016).) The results from this paper
suggest there might be new possibilities for the use of matching models in applied work
on environments characterized by complementarities.

Finally, we note that there is a formal connection between our results for matching
environments with complementary contracts and results from the literature on normal-
form games with strategic complementarities (e.g., Milgrom and Shannon (1994)). We
explore this connection in Rostek and Yoder (2020).



1816 M. ROSTEK AND N. YODER

APPENDIX A: PROOFS

It will occasionally be convenient to abuse notation and represent a set of primitive
contracts Ψ ⊆ Ω as an indicator vector Ψ ∈ {0�1}Ω, or Ψi ⊆ Ωi as an indicator vector
Ψi ∈ {0�1}Ωi .

PROOF OF LEMMA 1 (COMPLEMENTS, QUASISUPERMODULARITY, AND SINGLE CROSS-
ING): By Milgrom and Shannon (1994, Theorem 4), Ci is monotone in both arguments; it
follows that contracts are complements for i. Q.E.D.

PROOF OF LEMMA 2 (GROSS COMPLEMENTS, SUPERMODULARITY, AND INCREASING
DIFFERENCES): We can write vi(Ψ) −∑

ω∈Ψi
pω

i as Vi(Ψi�Ψ−i�−pi), where Vi : {0�1}Ωi ×
2Ω−i ×R

Ωi is defined by Vi(Υ���q) = vi(Υ ∪�)+ q ·Υ . By Milgrom and Shannon (1994,
Theorem 4), Di satisfies the gross complements condition if and only if Vi(Υ���q) is qua-
sisupermodular in Υ and has single crossing in (Υ� (��q)). Single crossing in (Υ� (��q))
is equivalent to the combination of single crossing in (Υ��) and (Υ�q): that the for-
mer implies the latter is obvious. To see that the latter implies the former, suppose
Υ ′′ ≥ Υ ′ ∈ {0�1}Ωi , �′′ ≥ �′ ∈ 2Ω−i , q′′ ≥ q′ ∈ R

n. Then if Vi(Υ���q) has single crossing
in (Υ��) and (Υ�q), Vi(Υ

′′��′� q′) ≥ Vi(Υ
′��′� q′) ⇒ Vi(Υ

′′��′′� q′) ≥ Vi(Υ
′��′′� q′) ⇒

Vi(Υ
′′��′′� q′′)≥ Vi(Υ

′��′′� q′′).
By definition, Vi(Υ���q) has increasing differences, and thus single crossing, in (Υ�q):

for Υ ′′ ≥ Υ ′ ∈ {0�1}Ωi , Vi(Υ
′′���q)−Vi(Υ

′���q) = vi(Υ
′′ ∪�)−vi(Υ

′ ∪�)+q · (Υ ′′ −Υ ′)
is increasing in q. From Topkis (1998, Theorem 2.6.6),37 Vi(Υ���q) has single crossing in
(Υ��) if and only if vi(Ψ) has increasing differences in (Ψi�Ψ−i). Hence, Vi(Υ���q) has
single crossing in (Υ� (��q)) if and only if vi(Ψ) has increasing differences in (Ψi�Ψ−i).

Moreover, from Topkis (1998, Theorem 2.6.5), Vi(Υ���q) is quasisupermodular in Υ
if and only if vi(Ψ) is supermodular in Ψi. The result follows. Q.E.D.

To prove our TU characterization of blocking and stability (Proposition 1(ii), Corol-
lary 1(ii)), we define a price vector for agent i, γi(Y), at which the primitive contracts
demanded by agent i are exactly those which are part of the contracts he chooses when
the set of available contracts is Y . Define γi : 2X → R

Ωi by the rule

γω
i (Y)≡

{
min

{
K�min

{
tωi |(ω� tω

) ∈ Y
}}
� ω ∈ τ(Y)�

K� ω /∈ τ(Y)�

for a constant K > maxi∈I�Ψ⊆Ω vi(Ψ)− mini∈I�Ψ ′⊆Ω vi(Ψ
′).

LEMMA 8: For each agent i, Di(γi(Y)|τ(Y)−i)= {τ(Z)|Z ∈ Ci(Yi|Y−i)}.
PROOF: By definition,

Di

(
γi(Y)|τ(Y)−i

)
= arg max

Ψ⊆Ωi

{
vi
(
Ψ ∪ τ(Y)−i

)−Ψ · γi(Y)
}

= arg max
Ψ⊆Ωi

{
vi
(
Ψ ∪ τ(Y)−i

)−
∑

ω∈Ψ∩τ(Y)

min
{
K�min

{
tωi |(ω� tω

) ∈ Y
}}−

∑
ω∈Ψ\τ(Y)

K

}
�

37The statement of Topkis (1998, Theorem 2.6.6) requires that the parameter space be a chain, but the proof
goes through as long as it is a partially ordered set.
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Since no primitive contract priced at K or higher can be part of a solution to this problem,

Di

(
γi(Y)|τ(Y)−i

)
= arg max

Ψ⊆Ωi

{
vi
(
Ψ ∪ τ(Y)−i

)−
∑

ω∈Ψ∩τ(Y)

min
{
tωi |(ω� tω

) ∈ Y
}−

∑
ω∈Ψ\τ(Y)

K

}

= arg max
Ψ⊆τ(Yi)

{
vi
(
Ψ ∪ τ(Y)−i

)−
∑
ω∈Ψ

min
{
tωi |(ω� tω

) ∈ Y
}}

= τ

(
arg max

S⊆Yi

{
vi
(
τ(S)∪ τ(Y)−i

)−
∑

(ω�tω)∈S
tωi

})
= {

τ(Z)|Z ∈Ci(Yi|Y−i)
}
� Q.E.D.

This also yields a useful corollary concerning the monotonicity of the choice correspon-
dence in terms of primitive contracts:

LEMMA 9: Suppose that agent i’s demand satisfies the gross complements property. Then
{τ(Z)|Z ∈Ci(Yi|Y−i)} is monotone (in the strong set order) in Y .

PROOF: Observe that γi(Y) is weakly decreasing in Y , and τ(Y)−i is weakly increasing
in Y . The statement follows from Lemma 8 and the gross complements property. Q.E.D.

PROOF OF PROPOSITION 1 (BLOCKING AND INDIVIDUAL RATIONALITY): (⇒) Part (i)
(NTU): Since Y is individually rational, Yi ∈ Ci(Yi|Y−i) for each i ∈ I. Suppose Z
blocks Y . Then for each i, there exists Y ′

i ∈Ci(Zi ∪Yi|Z−i ∪Y−i) such that Zi ⊆ Y ′
i . Since

contracts are complements, Y ′
i ∪ Yi ∈ Ci(Zi ∪ Yi|Z−i ∪ Y−i); then Zi ∪ Yi ⊆ Y ′

i ∪ Yi ⊆
Zi ∪Yi ⇒Zi ∪Yi = Y ′

i ∪Yi ∈ Ci(Zi ∪Yi|Z−i ∪Y−i). Hence, Y ∪Z is individually rational.
Part (ii) (TU): Suppose first that Y is blocked by Z with τ(Z) ∩ τ(Y) �= ∅. Then there

exists ω ∈ Ω such that (ω� t̂ω) ∈ Z and (ω� tω) ∈ Y . For agents i ∈ N(ω) to choose a set
of contracts containing (ω� t̂ω) when (ω� tω) is available, it must be that t̂ωi ≤ tωi . Since
tω ∈ Tω, summing across i ∈ N(ω) yields

∑
i∈N(ω) t̂

ω
i ≤ 0, which holds strictly if t̂ωi �= tωi

for any i ∈ N(ω). Then since t̂ω ∈ Tω, we must have (ω� t̂ω) ∈ Y , a contradiction since Z
blocks Y and thus Z ⊆ X \Y .

Now suppose Y is blocked by Z with τ(Z) ∩ τ(Y) = ∅. First, note that Z cannot con-
tain distinct contracts (ω� tω) and (ω� t̂ω), since no agent in N(ω) will choose both. For
each i ∈ N(Z), since Z blocks Y , Zi ∪ Y ′ ∈ Ci((Y ∪ Z)i|(Y ∪ Z)−i) for some Y ′ ⊆ Yi.
Then τ(Zi) ∪ τ(Y ′) ∈ {τ(Z′)|Z′ ∈ Ci((Y ∪ Z)i|(Y ∪ Z)−i)}. Since Y is individually ratio-
nal, τ(Yi) ∈ {τ(Z′)|Z′ ∈ Ci(Yi|Y−i)}. Then, by Lemma 9, τ(Yi)⊆ τ(Zi)∪ τ(Y ′), and since
Y ′ ⊆ Yi, τ(Zi) ∪ τ(Yi) ∈ {τ(Z′)|Z′ ∈ Ci((Y ∪ Z)i|(Y ∪ Z)−i)}. For each i /∈ N(Z), since
Y is individually rational, τ(Yi) ∈ {τ(Z′)|Z′ ∈ Ci(Yi|Y−i)}. Then, by Lemma 9, τ(Zi) ∪
τ(Yi) = τ(Yi) ∈ {τ(Z′)|Z′ ∈ Ci(Yi|(Y ∪ Z)−i)} = {τ(Z′)|Z′ ∈ Ci((Y ∪ Z)i|(Y ∪ Z)−i)}.
Since τ(Zi)∩ τ(Yi)= ∅, it follows that (Z ∪Y)i ∈Ci((Y ∪Z)i|(Y ∪Z)−i) for each i ∈ I.

(⇐) If Y ∪Z is individually rational, then, for each i, Zi ⊆ Yi∪Zi ∈Ci(Zi∪Yi|Z−i∪Y−i)
and so Z blocks Y . Q.E.D.

PROOF OF COROLLARY 1 (STABILITY AND INDIVIDUAL RATIONALITY): (⇒) (a) is
true by definition. Suppose that (b) fails, and there exists an individually rational Y ′ ⊃ Y .
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Then, by Proposition 1, Y ′ \ Y blocks Y , a contradiction. (⇐) Y is individually rational
by (a). Suppose Z blocks Y . Then, by Proposition 1, Y ∪ Z ⊃ Y is individually rational,
contradicting (b). Q.E.D.

PROOF OF LEMMA 3 (CONTRACTS ARE COMPLEMENTS ⇒ ACCEPTANCE SET IS CHO-
SEN): Choose Z = Y in the definition of complementary contracts. Then, for any
Y ∗�Z∗ ∈ Ci(Yi|Y−i), Y ∗ ∪ Z∗ ∈ Ci(Yi|Y−i). By induction, Ai(Y) ≡ ⋃

Y ′∈Ci(Yi|Y−i)
Y ′ ∈

Ci(Yi|Y−i). Q.E.D.

PROOF OF LEMMA 4 (INDIVIDUALLY RATIONAL OUTCOMES AS FIXED POINTS): (⇒)
Suppose Y is individually rational. Then, for all i, Yi ∈ Ci(Yi|Y−i) ⇒ Yi = Ai(Y) ⇒ Y =
Ai(Y) ∪ Y−i. Thus, Y = A(Y). (⇐) Suppose A(Y) = Y . Then, for each i, Y = A(Y) ⊆
Ai(Y) ∪ Y−i ⊆ Y by definition of A. It follows that Ai(Y) = Yi. Then, by Lemma 3,
Yi ∈ Ci(Yi|Y−i) for each i and Y is individually rational. Q.E.D.

PROOF OF PROPOSITION 2 (STABLE OUTCOMES AS FIXED POINTS): Follows directly
from Lemma 4 and Corollary 1. Q.E.D.

PROOF OF LEMMA 5 (COMPLEMENTARITY AND MONOTONICITY): Let Y ⊆ Z ⊆ X .
From Lemma 3, for all i ∈ I, Ai(Y) ∈ Ci(Yi|Y−i) and Ai(Z) ∈ Ci(Zi|Z−i). By the defi-
nition of complements, Ai(Y) ∪ Ai(Z) ∈ Ci(Zi|Z−i). Then Ai(Y) ∪ Ai(Z) ⊆ Ai(Z) ⇔
Ai(Y)⊆ Ai(Z)⇒ Ai(Y)∪Y−i ⊆Ai(Z)∪Z−i. Then A(Y) ⊆A(Z), as desired. Q.E.D.

PROOF OF THEOREM 1 (STABILITY WITH COMPLEMENTARY CONTRACTS): By Lem-
ma 5, A is monotone. Then, by Tarski’s fixed point theorem, its set of fixed points is a
complete lattice, and so has a largest element X∗. The theorem follows from Proposi-
tion 2. Q.E.D.

PROOF OF LEMMA 6 (GROSS COMPLEMENTARITY, SUPERMODULARITY, AND MONO-
TONICITY): Supermodularity and increasing differences of ṽi follow directly from Lem-
ma 2. Supermodularity and increasing differences of W follow since W (�|Ψ) =∑

i∈I ṽi(�|Ψ). Then, by Topkis (1998, Theorem 2.8.1), F is increasing (in the strong set
order). Q.E.D.

To prove our result characterizing the set of competitive equilibria, we employ a discrete
convex duality result from Fujishige (1984). Define the convex and concave conjugate
functions of f : 2Ω → R as follows:

f ◦(p)≡ min
�⊆Ω

{
p ·�− f (�)

}
� f •(p)≡ max

�⊆Ω

{
p ·�− f (�)

}
�

Note that

f ◦(p)= −max
�⊆Ω

{
f (�)−p ·�}= −(−f )•(−p)�

f •(p)= −min
�⊆Ω

{
f (�)−p ·�}= −(−f )◦(−p)�

LEMMA 10—Fujishige (1984, Theorem 3.3): For a supermodular function g : 2Ω → R

and a submodular function f : 2Ω → R,

min
�⊆Ω

{
f (�)− g(�)

}= max
p∈RΩ

{
g◦(p)− f •(p)

}
�
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COROLLARY 2: For two supermodular functions f�g : 2Ω → R,

max
�⊆Ω

{
f (�)+ g(�)

}= min
p∈RΩ

{−g◦(p)− f ◦(−p)
}
�

PROOF: Since f is supermodular, −f is submodular. Then, by Lemma 10,
max�⊆Ω{f (�) + g(�)} = −min�⊆Ω{−f (�) − g(�)} = −maxp∈RΩ{g◦(p) − (−f )•(p)} =
minp∈RΩ{−g◦(p)+ (−f )•(p)} = minp∈RΩ{−g◦(p)− f ◦(−p)}, as desired. Q.E.D.

Noting that the class of supermodular functions is closed under affine transformations
yields the following more general version:

COROLLARY 3: For two supermodular functions f�g : 2Ω → R,

−(f + g)◦(q) = min
p∈RΩ

{−g◦(p+ q)− f ◦(−p)
}
�

PROOF: For each q ∈ R
Ω, let gq : 2Ω → R be defined by gq(�) = g(�) − q · �. Since

g is supermodular, and the class of supermodular functions is closed under affine trans-
formations, so is gq. Then, by Corollary 2, max�⊆Ω{f (�) + gq(�)} = minp∈RΩ{−g◦

q(p) −
f ◦(−p)}. Furthermore, g◦

q(p) = min�⊆Ω{p · � − g(�) + q · �} = g◦(p + q). Then we
have −(f + g)◦(q) = −min�⊆Ω{q ·�− f (�)− g(�)} = max�⊆Ω{f (�)+ g(�)− q ·�} =
max�⊆Ω{f (�)+ gq(�)} = minp∈RΩ{−g◦

q(p)− f ◦(−p)} = minp∈RΩ{−g◦(p+ q)− f ◦(−p)},
as desired. Q.E.D.

Now define agent i’s conditional profit function πi :RΩ ×2Ω as πi(p|Ψ)≡ max�⊆Ω{ṽi(�|
Ψ)−� ·p}, and note that πi(p|Ψ) = −(ṽi(·|Ψ))◦(p)= (−ṽi(·|Ψ))•(−p) for each Ψ ⊆ Ω.
Inductively applying Corollary 3 to sums of the agents’ conditional value functions yields
the following:

LEMMA 11—Duality in the Conditional Social Planner’s Problem: If primitive contracts
are gross complements, then, for each Ψ ⊆Ω,

max
�⊆Ω

W (�|Ψ) = min
{ri}i∈I∈RΩ×I

{∑
i∈I

πi(ri|Ψ) s.t.
∑
i∈I

ri = 0
}
� (2)

PROOF: Label the agents in I as i = 1�2� � � � � |I| and note that by Lemma 9, ṽi(�|Ψ)
is supermodular in � for each i. We proceed by induction. For our initial step, we have
from Corollary 3 that for each q ∈R

Ω,

−(ṽ1(·|Ψ)+ ṽ2(·|Ψ)
)◦
(q) = min

p∈RΩ

{−(ṽ1(·|Ψ)
)◦
(p+ q)− (

ṽ2(·|Ψ)
)◦
(−p)

}
= min

r1�r2∈RΩ

{
π1(r1|Ψ)+π2(r2|Ψ) s.t. r1 + r2 = q

}
�

For our induction step, suppose that for each q ∈ R
Ω and some 2 ≤ k< |I|,

−
(

k∑
i=1

ṽi(·|Ψ)

)◦

(q) = min
{ri}ki=1∈RΩk

{
k∑
i=1

πi(ri|Ψ) s.t.
k∑
i=1

ri = q

}
� (3)



1820 M. ROSTEK AND N. YODER

Now since sums of supermodular functions are supermodular,
∑k

i=1 ṽi(·|Ψ) is supermod-
ular; then from Corollary 3,

−
(

k+1∑
i=1

ṽi(·|Ψ)

)◦

(q)= min
p∈RΩ

{
−
(

k∑
i=1

ṽi(·|Ψ)

)◦

(p+ q)− (
ṽk+1(·|Ψ)

)◦
(−p)

}

= min
p∈RΩ

{
min

{ri}ki=1∈RΩk

{
k∑
i=1

πi(ri|Ψ) s.t.
k∑
i=1

ri = p+ q

}
+πk+1(−p|Ψ)

}

= min
{ri}k+1

i=1 ∈RΩk+1

{
k+1∑
i=1

πi(ri|Ψ) s.t.
k+1∑
i=1

ri = q

}
�

Then (3) holds for each 2 ≤ k ≤ |I| and each q ∈ R
Ω. Choosing k = |I| and q = 0 yields

max�⊆ΩW (�|Ψ) = max�⊆Ω{∑i∈I ṽi(�|Ψ)} = −min�⊆Ω{−∑i∈I ṽi(�|Ψ)} = −(
∑

i∈I ṽi(·|
Ψ))◦(0)= min{ri}i∈I∈RΩ×I {∑i∈I πi(ri|Ψ) s.t.

∑
i∈I ri = 0}, as desired. Q.E.D.

In keeping with the literature, we call the left-hand side of (2) the social planner’s Ψ -
conditional primal problem (the set of solutions to which is precisely F(Ψ)) and the right-
hand side the social planner’s Ψ -conditional dual problem.

LEMMA 12—Primal Solutions Maximize Conditional Profits: Suppose that primitive
contracts are gross complements. If r∗ = {r∗

i }i∈I is a solution to the Ψ -conditional dual prob-
lem and �∗ ∈ F(Ψ), then ṽi(�

∗|Ψ)− r∗
i ·�∗ = πi(r

∗
i |Ψ) for each i ∈ I.

PROOF: By definition, for each i we have ṽi(�
∗|Ψ) − r∗

i · �∗ ≤ πi(r
∗
i |Ψ). Since the r∗

i

sum to zero, summing over the i yields
∑

i∈I ṽi(�
∗|Ψ) ≤ ∑

i∈I πi(r
∗
i |Ψ). We know from

Lemma 11 that this holds with equality, which requires ṽi(�∗|Ψ)− r∗
i ·�∗ = πi(r

∗
i |Ψ) for

each i. Q.E.D.

We need to show that the dual problem has a solution which is a lifting of a set of price
vectors, that is, such that rωi = 0 for all ω ∈ Ω and all i /∈ N(ω). To this end, define the
map ρ :RΩ×I →R

Ω×I :

ρ[r]ωi ≡

⎧⎪⎨⎪⎩
0� i /∈N(ω)�

rωi + 1∣∣N(ω)
∣∣ ∑
j /∈N(ω)

rωj � i ∈N(ω)�

Observe that
∑

i∈I ρ[r]i = 0 for any r = {ri}i∈I with
∑

i∈I ri = 0.

LEMMA 13—Dual Solutions are Closed Under ρ: Suppose that primitive contracts are
gross complements. If r = {ri}i∈I solves the social planner’s Ψ -conditional dual problem, then
so does ρ[r] = {ρ[r]i}i∈I .

PROOF: First, choose �∗ ∈ F(Ψ), and note that by Lemma 12, for each ω ∈ �∗ and
each j /∈ N(ω), we have πj(rj|Ψ) ≥ ṽj(�

∗ \ {ω}|Ψ) − (�∗ \ {ω}) · rj = ṽj(�
∗|Ψ) + rωj −

�∗ · rj = πj(rj|Ψ) + rωj and so rωj ≤ 0; and for each ω /∈ �∗ and each j /∈ N(ω), we have
πj(rj|Ψ)≥ ṽj(�

∗ ∪ {ω}|Ψ)− (�∗ ∪ {ω}) · rj = ṽj(�
∗|Ψ)− rωj −�∗ · rj = πj(rj|Ψ)− rωj and
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so rωj ≥ 0. It follows that for each ω ∈ Ω and each i ∈ N(ω), ρ[r]ωi ≤ rωi if ω ∈ �∗ and
ρ[r]ωi ≥ rωi if ω /∈ �∗.

Now, by Lemma 12, for all i ∈ I and all �⊆ Ω we have

ṽi
(
�∗|Ψ )−�∗ · ri ≥ ṽi

(
�i ∪�∗

−i|Ψ
)− (

�i ∪�∗
−i

) · ri
⇔ ṽi

(
�∗|Ψ )−�∗ · ri ≥ ṽi(�|Ψ)− (

�i ∪�∗
−i

) · ri
(
ṽi
(
�i ∪�∗

−i|Ψ
)= ṽi(�|Ψ)

)
⇔ ṽi

(
�∗|Ψ )−�∗

i · ri ≥ ṽi(�|Ψ)−�i · ri
(subtract �∗

−i · ri from both sides)

⇔ ṽi
(
�∗|Ψ )− (

�∗ ∩�
)
i
· ri −

(
�∗ \�)

i
· ri

≥ ṽi(�|Ψ)− (
�∩�∗)

i
· ri −

(
� \�∗)

i
· ri

⇔ ṽi
(
�∗|Ψ )− (

�∗ ∩�
)
i
· ρ[r]i −

(
�∗ \�)

i
· ri

≥ ṽi(�|Ψ)− (
�∩�∗)

i
· ρ[r]i −

(
� \�∗)

i
· ri(

add
(
�∩�∗)

i
· (ri − ρ[r]i

)
to both sides

)
⇒ ṽi

(
�∗|Ψ )− (

�∗ ∩�
)
i
· ρ[r]i −

(
�∗ \�)

i
· ri

≥ ṽi(�|Ψ)− (
�∩�∗)

i
· ρ[r]i −

(
� \�∗)

i
· ρ[r]i(

since ρ[r]ωi ≥ rωi for ω /∈ �∗ and i ∈ N(ω)
)

⇒ ṽi
(
�∗|Ψ )− (

�∗ ∩�
)
i
· ρ[r]i −

(
�∗ \�)

i
· ρ[r]i

≥ ṽi(�|Ψ)− (
�∩�∗)

i
· ρ[r]i −

(
� \�∗)

i
· ρ[r]i(

since ρ[r]ωi ≤ rωi for ω ∈ �∗ and i ∈ N(ω)
)

⇔ ṽi
(
�∗|Ψ )−�∗

i · ρ[r]i ≥ ṽi(�|Ψ)−�i · ρ[r]i
⇔ ṽi

(
�∗|Ψ )−�∗ · ρ[r]i ≥ ṽi(�|Ψ)−� · ρ[r]i�

where the last line follows since ρ[r]ωi = 0 for all ω /∈ Ωi. It follows that ṽi(�∗|Ψ) − �∗ ·
ρ[r]i = πi(ρ[r]i|Ψ) for each i ∈ I. Summing over i yields W (�∗|Ψ) = ∑

i∈I πi(ρ[r]i|Ψ);
it follows from Lemma 11 that ρ[r] = {ρ[r]i}i∈I solves the social planner’s Ψ -conditional
dual problem. Q.E.D.

PROOF OF PROPOSITION 3 (COMPETITIVE EQUILIBRIA WITH GROSS COMPLEMENTAR-
ITY): Part (i). (⇒) Choose a solution r∗ = {r∗

i }i∈I to the Ψ -conditional dual problem. By
Lemma 13, ρ[r∗] also solves the Ψ -conditional dual problem. For each i ∈ I, let pi =
ρ[r∗]Ωi

i . By definition of ρ,
∑

i∈N(ω) p
ω
i =∑

i∈N(ω) ρ[r∗]ωi = 0 for each ω ∈ Ω. By Lemma 12
and by definition of ṽi, for all i ∈ I and �⊆ Ω, vi(Ψ)−Ψ ·ρ[r∗]i ≥ ṽi(�i ∪Ψ−i)−� ·ρ[r∗]i.
Since ρ[r∗]ωi = 0 for all ω ∈ Ω−i, this implies vi(Ψ)−Ψi ·ρ[r∗]i ≥ ṽi(�i ∪Ψ−i)−�i ·ρ[r∗]i,
or equivalently, vi(Ψ)−Ψi ·pi ≥ ṽi(�i ∪Ψ−i)−�i ·pi. Then Ψi ∈Di(pi|Ψ−i) for all i ∈ I,
and (Ψ� {pi}i∈I) is a competitive equilibrium.

(⇐) Suppose (Ψ� {p′
i}i∈I) is a competitive equilibrium but Ψ is not conditionally effi-

cient. For all i ∈ I, since Ψi ∈ Di(p
′
i|Ψ−i), we have πi(p

′
i ⊕ 0Ω−i

|Ψ) = vi(Ψ) − p′
i · Ψi for
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each i. Since
∑

i∈I p
′
i ⊕ 0Ω−i

= 0 and Ψ is not conditionally efficient, we have∑
i∈I

πi

(
p′

i ⊕ 0Ω−i
|Ψ )=

∑
i∈I

vi(Ψ) < max
�⊆Ω

W (�|Ψ)

= min
{ri}i∈I∈RΩ×I

{∑
i∈I

πi(ri|Ψ) s.t.
∑
i∈I

ri = 0
}
�

a contradiction.
Part (ii). By Lemma 6, F is increasing (in the strong set order). Then, by Topkis (1998,

Theorem 2.5.1), the set of fixed points of F is a nonempty complete lattice. Q.E.D.

LEMMA 14: Suppose Y is a complete lattice with partial order �, that G : Y ⇒ Y is an
increasing correspondence, and that G(x) is a complete lattice for all x ∈ Y . If z � y for some
y ∈ Y and z ∈G(y), then G has a fixed point y∗ � y .

PROOF: For each x ∈ Y , G(x) has a �-largest element since it is a complete lattice.
Denote this element G∨(x). Then G∨(y)� z � y . Since G is monotone, so is G∨ : Y → Y
(Topkis (1998, Theorem 2.4.3)). Then, for all x � y , G∨(x) � G∨(y) � y . Then G∨ maps
{x ∈ Y |x � y} into itself. Since {x ∈ Y |x � y} is a subcomplete sublattice of Y (see Topkis
(1998, Example 2.2.5(e))), it follows from Tarski’s fixed point theorem, applied to the
restriction of G∨ to {x ∈ Y |x � y}, that G∨ has a fixed point in {x ∈ Y |x � y}—which is
then also a fixed point of G. Q.E.D.

COROLLARY 4: Suppose that G : 2Ω ⇒ 2Ω is an increasing correspondence, and that G(�)
is a complete lattice for all � ⊆ Ω. If Υ ⊇ Ψ for some Ψ ⊆ Ω and Υ ∈ G(Ψ), then G has a
fixed point Ψ ∗ ⊇Ψ .

LEMMA 15: In a transferable utility matching environment where primitive contracts are
gross complements, if Y ⊆X is individually rational, then there is a conditionally efficient set
of primitive contracts Ψ ∗ such that Ψ ∗ ⊇ τ(Y).

PROOF: Since Y is individually rational, by definition, Yi ∈ Ci(Yi|Y−i) for all i ∈ I. This
can only be true if there is no x�x′ ∈ Yi with τ(x)= τ(x′) for any i.

Then we have

vi
(
τ(Y)

)−
∑

(ω�tω)∈Yi

tωi ≥ vi
(
�i ∪ τ(Y)−i

)−
∑

(ω�tω)∈Yi�ω∈�
tωi

(∀�⊆ τ(Y)� i ∈ I
)

⇒ W
(
τ(Y)|τ(Y)

)=
∑
i∈I

vi
(
τ(Y)

)≥
∑
i∈I

vi
(
�i ∪ τ(Y)−i

)=W
(
�|τ(Y)

)
(∀�⊆ τ(Y)

)
⇔ W

(
τ(Y)|τ(Y)

)≥W
(
�∩ τ(Y)|τ(Y)

)
(∀�⊆ Ω)

⇒ W
(
τ(Y)∪�|τ(Y)

)≥W
(
�|τ(Y)

)
(∀� ⊆Ω)

by supermodularity of W in its first argument (Lemma 6). It follows that for any Ψ ∈
F(τ(Y)), Ψ ∪ τ(Y) ∈ F(τ(Y)). By Lemma 6, F is increasing and for each � ⊆ Ω, F(�)
is a complete lattice. Then by Corollary 4, F has a fixed point Ψ ∗ ⊇ τ(Y). Q.E.D.
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LEMMA 16—Transfers From Individually Rational Outcomes Can Be Swapped With
Competitive Equilibrium Prices: In a transferable utility matching environment where prim-
itive contracts are gross complements, if Y is individually rational and (Ψ� {pi}i∈I) is a com-
petitive equilibrium for Ψ ⊇ τ(Y), then (Ψ� {qi}i∈I) is also a competitive equilibrium for
{qi}i∈I defined by

qω
i =

{
tωi �

(
ω� tω

) ∈ Y�

pω
i � ω ∈ Ωi \ τ(Y)i�

PROOF: Since Y is individually rational, we cannot have x �= x′ ∈ Y with τ(x) = τ(x′),
since no agent in N(x) =N(x′) will ever choose both simultaneously. It follows that {qi}i∈I
is well-defined.

For ω ∈ τ(Y), we have
∑

i∈N(ω) q
ω
i =∑

i∈N(ω) t
ω
i = 0, since tω ∈ Tω. For ω /∈ τ(Y), we

have
∑

i∈N(ω) q
ω
i = ∑

i∈N(ω) p
ω
i = 0, since (Ψ� {pi}i∈I) is a competitive equilibrium. Then∑

i∈N(ω) q
ω
i = 0 for each ω ∈ Ω.

Since (Ψ� {pi}i∈I) is a competitive equilibrium, for each i ∈ I and all �⊆Ωi,

vi(Ψ)−
∑
ω∈Ψi

pω
i ≥ vi

(
�∪ τ(Y)i ∪Ψ−i

)−
∑

ω∈�∪τ(Y)i

pω
i

⇔ vi(Ψ)−
∑

ω∈Ψi\τ(Y)i

pω
i ≥ vi

(
�∪ τ(Y)i ∪Ψ−i

)−
∑

ω∈�\τ(Y)i

pω
i

⇔ vi(Ψ)−
∑

ω∈Ψi\τ(Y)i

pω
i −

∑
(ω�tω)∈Yi

tωi

≥ vi
(
�∪ τ(Y)i ∪Ψ−i

)−
∑

ω∈�\τ(Y)i

pω
i −

∑
(ω�tω)∈Yi

tωi � (4)

Since Y is individually rational, ui(Y)≥ ui({(ω� tω) ∈ Y |ω ∈�} ∪Y−i), that is,

vi
(
τ(Y)

)−
∑

(ω�tω)∈Yi

tωi ≥ vi
((
�∩ τ(Y)i

)∪ τ(Y)−i

)−
∑

(ω�tω)∈Yi�ω∈�
tωi �

By Lemma 2, since τ(Y)−i = τ(Y)∩Ω−i ⊆ Ψ ∩Ω−i =Ψ−i,

vi
(
τ(Y)i ∪Ψ−i

)− vi
(
τ(Y)

)≥ vi
((
�∩ τ(Y)i

)∪Ψ−i

)− vi
((
�∩ τ(Y)i

)∪ τ(Y)−i

)
vi
(
τ(Y)i ∪�∪Ψ−i

)− vi
(
τ(Y)i ∪Ψ−i

)≥ vi(�∪Ψ−i)− vi
((
�∩ τ(Y)i

)∪Ψ−i

)
⇒ vi

(
τ(Y)i ∪�∪Ψ−i

)−
∑

(ω�tω)∈Yi

tωi ≥ vi(�∪Ψ−i)−
∑

(ω�tω)∈Yi�ω∈�
tωi �

From (4),

vi(Ψ)−
∑

ω∈Ψi\τ(Y)i

pω
i −

∑
(ω�tω)∈Yi

tωi ≥ vi(�∪Ψ−i)−
∑

ω∈�\τ(Y)i

pω
i −

∑
(ω�tω)∈Yi�ω∈�

tωi

⇔ vi(Ψ)−Ψi · qi ≥ vi(�∪Ψ−i)−� · qi�

Hence, Ψi ∈Di(qi|Ψ−i). Q.E.D.
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LEMMA 17—Competitive Equilibria Form Individually Rational Outcomes: Suppose
(Ψ� {pi}i∈I) is a competitive equilibrium in a transferable utility matching environment. Then
Y = {(ω� tω)|ω ∈ Ψ� tωi = pω

i ∀i ∈N(ω)} is individually rational.

PROOF: Since (Ψ� {pi}i∈I) is a competitive equilibrium, for each i ∈ I,

Ψi ∈ arg max
�⊆Ωi

{
vi(�∪Ψ−i)−

∑
ω∈�

pω
i

}
⇒Ψi ∈ arg max

�⊆Ψi

{
vi(�∪Ψ−i)−

∑
ω∈�

pω
i

}

⇔ Yi ∈ arg max
Z⊆Yi

{
vi
(
τ(Z)∪Ψ−i

)−
∑

(ω�tω)∈Z
tωi

}
= Ci(Yi|Y−i)�

It follows that Y is individually rational. Q.E.D.

PROOF OF THEOREM 2 (STABILITY WITH GROSS COMPLEMENTARITY): Part (i). Fol-
lows from part (ii) of Proposition 3.

Part (ii). (⇐) Suppose τ(Y) = Ω∗ and (Ω∗� {pi}i∈I) is a competitive equilibrium such
that tωi = pω

i for each (ω� tω) ∈ Y and i ∈ I, but Y is not stable. By Lemma 17, Y is
individually rational. Then, by Corollary 1(ii), there must be some individually rational
Z ⊃ Y . Then, by Lemma 15, there exists a conditionally efficient set of primitive contracts
Ψ ∗ such that Ψ ∗ ⊇ τ(Z)⊃ τ(Y) =Ω∗, a contradiction since Ω∗ is the largest conditionally
efficient set of primitive contracts.

(⇒) Suppose Y is stable. Then Y is individually rational, and by Lemma 15 there exists
a conditionally efficient set of primitive contracts Ψ ∗ such that Ψ ∗ ⊇ τ(Y). Then τ(Y) ⊆
Ω∗. By Proposition 3, there exists a competitive equilibrium (Ω∗� {p′

i}i∈I). By Lemma 16,
there exists a competitive equilibrium (Ω∗� {qi}i∈I) such that qω

i = tωi for each (ω� tω) ∈ Y
and i ∈ N(ω). It follows from Lemma 17 that Y ′ = Y ∪ {(ω� tω)|ω ∈ Ω∗ \ τ(Y)� tωi =
qω
i ∀i ∈ N(ω)} is individually rational. Since Y ′ ⊇ Y , and Y is stable, it follows from

Corollary 1(ii) that Y ′ = Y . Then {(ω� tω)|ω ∈ Ω∗ \ τ(Y)� tωi = qω
i ∀i ∈ N(ω)} is empty,

implying Ω∗ = τ(Y). Q.E.D.

PROOF OF LEMMA 7 (ALGORITHM FOR STABLE OUTCOMES IN TU MATCHING ENVI-
RONMENTS): By Topkis (1998, Theorem 2.4.3), F∨ is monotone. Then, by Tarski’s fixed
point theorem, its set of fixed points is a complete lattice, and so has a largest element
�∗. By Proposition 3, the collection of fixed points of F is a complete lattice, and so
has a largest element Ψ ∗. Suppose Ψ ∗ �= �∗. Since F∨ is a selection from F , �∗ is also a
fixed point of F . Then �∗ ⊂ Ψ ∗. Since �∗ is the largest fixed point of F∨, it follows that
F∨(Ψ ∗) �= Ψ ∗. Since Ψ ∗ ∈ F(Ψ ∗), it must be that F∨(Ψ ∗) ⊃ Ψ ∗. Then, by Corollary 4, F∨
has a fixed point �′ ⊇Ψ ∗ ⊃�∗, a contradiction. Q.E.D.

PROOF OF PROPOSITION 4 (MONOTONE COMPARATIVE STATICS): (i) By Lemma 1,
contracts are complements in each M(θ). Denote each agent’s choice correspondence
in M(θ) by Ci(Yi|Y−i� θ) = arg maxS⊆Y ui(S ∪ Y−i� θ) and her acceptance function by
Ai(Y�θ) = ⋃

Z∈Ci(Yi|Y−i�θ)
Z. Denote the aggregate acceptance function in M(θ) by

A(Y�θ)=⋂
i∈I(Ai(Y�θ)∪Y−i); by Theorem 1, X∗(θ) is the largest fixed point of A(·� θ).

By Theorem 4 in Milgrom and Shannon (1994), Ci(Yi|Y−i� θ) is increasing in θ and Y .
By Lemma 3, Ai(Y�θ) is the largest element of Ci(Yi|Y−i� θ) and so is also increasing in
θ and Y . Then so is A(Y�θ). The result follows from Topkis (1998, Theorem 2.5.2(b)).
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(ii) If each vi(Ψ�θ) is supermodular in Ψi and has increasing differences in (Ψi�Ψ−i)
and in (Ψi� θ), then each ṽi(Ψ |��θ) is supermodular in Ψ and has increasing differences
in (Ψ��) and in (Ψ�θ). Then the same is true of W (Ψ |��θ) = ∑

i∈I ṽi(Ψ |��θ). Then,
by Topkis (1998, Theorem 2.8.1), the conditional optimizer correspondence F(��θ) =
arg maxΨ⊆ΩW (Ψ |��θ) is increasing in both arguments (in the strong set order) and for
each �, θ, F(��θ) is a complete lattice. The result follows from Topkis (1998, Theo-
rem 2.5.2(b)). Q.E.D.

PROOF OF PROPOSITION 5 (EFFECTS OF BUNDLING CONTRACTS NOT SIGNED IN THE
STABLE OUTCOME): The proof relies on Lemma B.2 in the Supplemental Material.
Part (i) (NTU): Let A and Â be the aggregate acceptance functions for M and M̂ ,
respectively. (a) By Theorem 1, Ω∗ = A(Ω∗). By Lemma B.2(i), Ω∗ = A(α(α−1(Ω∗))).
By Lemma B.2(viii), Ω∗ = α(Â(α−1(Ω∗))) ⇒ α−1(Ω∗) = α−1(α(Â(α−1(Ω∗)))); by Lem-
ma B.2(i), α−1(Ω∗) = Â(α−1(Ω∗)). By Theorem 1, Ω̂∗ is the largest fixed point of Â, so it
must be that α−1(X∗)⊆ Ω̂∗. (b) By Theorem 1, Ω̂∗ = Â(Ω̂∗), hence α(Ω̂∗)= α(Â(Ω̂∗)) =
A(α(Ω̂∗)) (by Lemma B.2(viii)). By Theorem 1, Ω∗ is the largest fixed point of A, so it
must be that α(Ω̂∗)⊆ Ω∗.

Part (ii) (TU): Let F and F̂ be the conditional optimizer correspondences for M

and M̂ , respectively. (a) First note that by Lemma B.2(i), α(α−1(Ω∗)) = Ω∗. Since Ω∗

is conditionally efficient, by definition Ω∗ ∈ F(Ω∗) ⇔ α(α−1(Ω∗)) ∈ F(α(α−1(Ω∗))). By
Lemma B.2(x), there exists �̂ ∈ F̂(α−1(Ω∗)) with �̂⊇ α−1(Ω∗). By Lemma 6, F̂ is increas-
ing, and for each Ψ ⊆ Ω̂, F̂(Ψ) is a complete lattice. Then by Corollary 4, F̂ has a fixed
point Ψ ∗ ⊇ α−1(Ω∗). Since Ω̂∗ is the largest conditionally efficient set of primitive con-
tracts in M̂ , it follows that Ω̂∗ ⊇ Ψ ∗ ⊇ α−1(Ω∗). (b) Since Ω̂∗ is conditionally efficient, by
definition Ω̂∗ ∈ F̂(Ω̂∗). By Lemma B.2(xi), there exists � ∈ F(α(Ω̂∗)) with � ⊇ α(Ω̂∗).
By Lemma 6, F is increasing, and for each Ψ ⊆ Ω, F(Ψ) is a complete lattice. Then, by
Corollary 4, F has a fixed point Ψ ∗ ⊇ α(Ω̂∗). Since Ω∗ is the largest conditionally efficient
set of primitive contracts in M , it follows that Ω∗ ⊇Ψ ∗ ⊇ α(Ω̂∗). Q.E.D.
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